

Contents

A Bit of Theory 7

Imperative vs. Declarative Programming . 7

Imperative Programming . 7

Declarative Programming . 9

Higher Order Functions . 9

Noticing Patterns . 10

Functional Building Blocks . 15

Each. 15

Map . 17

Filter . 19

Reduce . 23

Transforming Data . 31

Thinking in Steps . 33

The Problem with Primitives . 35

Arrays as Objects . 37

Introducing Collections . 38

A Note on Mutability. 40

Quacking Like... an Array? . 42

The Golden Rule of Collection Programming 49

A Lot of Practice 51

Pricing Lamps and Wallets . 52

Replace Conditional with Filter . 54

Replace || with Contains . 55

Reduce to Sum . 56

Replace Nested Loop with FlatMap . 58

Plucking for Fun and ProMt . 61

CSV Surgery 101. 62

Everything is Better as a Collection . 65

Binary to Decimal . 67

A Quick Refresher . 67

Using a For Loop . 67

Breaking It Down . 68

Reversing the Collection. 69

Mapping with Keys . 70

What's Your GitHub Score? . 72

Loops and Conditionals . 73

Replace Collecting Loop with Pluck . 74

Extract Score Conversion with Map . 76

Replace Switch with Lookup Table . 78

Associative Collections . 79

Extracting Helper Functions . 82

Encapsulating in a Class . 83

Formatting a Pull Request Comment . 86

Concatenating in a Loop . 87

Map and Implode. 87

Stealing Mail . 88

Replace Nested Check with Contains . 90

Contains as a Higher Order Function . 91

Choosing a Syntax Handler . 94

Looking for a Match . 95

Getting the Right Checker . 96

Replace Iteration with First . 97

A Hidden Rule. 98

Providing a Default . 99

The Null Object Pattern . 100

The Null Checker . 101

Tagging on the Fly. 104

Extracting the Loop. 105

Normalizing with Map . 107

Nitpicking a Pull Request . 109

A Fork in the Code. 110

Learning from Smalltalk . 111

Collection Macros . 113

Chainable Conditions . 114

Comparing Monthly Revenue . 117

Matching on Index. 118

Zipping Things Together . 119

Using Zip to Compare. 119

Transposing Form Input . 121

Quick and Dirty . 125

Identifying a Need . 126

Introducing Transpose . 128

Implementing Transpose . 130

Transpose in Practice . 130

Ranking a Competition . 132

Zipping-in the Ranks . 134

Dealing with Ties . 135

One Step at a Time . 136

Grouping by Score. 137

Adjusting the Ranks . 139

Collapse and Sort . 142

Cleaning Up. 144

Grouping Operations . 147

Breaking the Chain . 148

The Pipe Macro . 149

A�erword 152

A Bit of Theory

Imperative vs. Declarative Programming
You've probably heard the terms imperative (or procedural) and declarative
programming before, and if you're anything like me, went looking for a precise
deMnition of the two only to Mnd some vague hand wavy descriptions that
didn't give you any concrete answers.

Over time I've realized that this is because it really isn't black or white. Code
snippet A can be more declarative than code snippet B, but maybe code snippet
C is even more declarative than code snippet A.

Here's my best shot at explaining how I think about imperative and declarative
programming.

Imperative Programming

Imperative programming is a style of programming that focuses on how
something gets done. The code is usually overly concerned with building
results in intermediate variables and managing control Now with loops and
conditional statements.

Say we have a list of users and we want to fetch the email addresses of all users
who have an email address on Mle.

An imperative solution in PHP could look like this:

function getUserEmails($users)

{

$emails = [];

for ($i = 0; $i < count($users); $i++) {

$user = $users[$i];

if ($user->email !== null) {

$emails[] = $user->email;

}

}

return $emails;

}

This probably seems innocent enough, and we've all written code that looks
like this. But think about what this code is saying:

1. Create an empty array that we will use to build our result

2. Create a variable to store our counter, starting at 0

3. Check our counter variable to make sure it is still less than the number of
users in the array

• If so:

1. Create a reference to the item in the array at the location
matching our current counter value

2. Check if the email property of the user is equal to null

• If not, add that user's email address to the end of our result
array

3. Increment our counter by one

4. Return to step 3

• If not, return our result array

Chapter 1. Imperative vs. Declarative Programming 8

Instead of trying to say "give me the emails of the users who have emails", the
solution focuses on implementation details about how many times to repeat
chunks of code, accessing indexes on data structures, and managing counters.

Declarative Programming

Instead of focusing on how the computer should do the work, declarative
programming focuses on telling the computer what we need it to accomplish.

Compare the code above to the same operation in SQL:

SELECT email FROM users WHERE email IS NOT NULL

We didn't have to write anything about loops, counters, or array indexes. We
just told the computer what we wanted, not how to get it.

Under the hood, I'm sure the SQL engine must be doing some sort of iteration
or keeping track of which records it's checked or which records it hasn't, but I
don't really know for sure.

And that's the beauty of it: I don't need to know.

PHP is a much diLerent beast than SQL of course, and we're not going to be
able to recreate that exact syntax.

But can we get any closer? Sure we can, using higher order functions!

Higher Order Functions
A higher order function is a function that takes another function as a
parameter, returns a function, or does both.

For example, here's a higher order function that wraps a block of code in a
database transaction:

9 Part 1. A Bit of Theory

public function transaction($func)

{

$this->beginTransaction();

try {

$result = $func();

$this->commitTransaction();

} catch (Exception $e) {

$this->rollbackTransaction();

throw $e;

}

return $result

}

And here's what it would look like to use:

try {

$databaseConnection->transaction(function () use ($comment) {

$comment->save();

});

} catch (Exception $e) {

echo "Something went wrong!";

}

Noticing Patterns

Higher order functions are powerful because they let us create abstractions
around common programming patterns that couldn't otherwise be reused.

Say we have a list of customers and we need to get a list of their email
addresses. We can implement that without any higher order functions like this:

Chapter 2. Higher Order Functions 10

$customerEmails = [];

foreach ($customers as $customer) {

$customerEmails[] = $customer->email;

}

return $customerEmails;

Now say we also have a list of product inventory and we want to know the total
value of our stock of each item. We might write something like this:

$stockTotals = [];

foreach ($inventoryItems as $item) {

$stockTotals[] = [

'product' => $item->productName,

'total_value' => $item->quantity * $item->price,

];

}

return $stockTotals;

At Mrst glance it might not look like there's much to abstract here, but if you
look carefully you'll notice there's only one real diLerence between these two
examples.

In both cases, all we're doing is building a new array of items by applying some
operation to every item in the existing list. The only diLerence between the
two examples is the actual operation that we apply.

In the Mrst example we're just extracting the email Meld from the item:

11 Part 1. A Bit of Theory

$customerEmails = [];

foreach ($customers as $customer) {

$email = $customer->email;

$customerEmails[] = $email;

}

return $customerEmails;

In the second example, we create a new associative array from several of the
item's Melds:

$stockTotals = [];

foreach ($inventoryItems as $item) {

$stockTotal = [

'product' => $item->productName,

'total_value' => $item->quantity * $item->price,

];

$stockTotals[] = $stockTotal;

}

return $stockTotals;

If we generalize the names of everything except the two chunks of code that
are diLerent, we get this:

$results = [];

foreach ($items as $item) {

$result = $item->email;

$results[] = $result;

}

return $results;

Chapter 2. Higher Order Functions 12

$results = [];

foreach ($items as $item) {

$result = [

'product' => $item->productName,

'total_value' => $item->quantity * $item->price,

];

$results[] = $result;

}

return $results;

We're close to an abstraction here, but those two pesky chunks of code in the
middle are preventing us from getting there. We need to get those pieces out
and replace them with something that can stay the same for both examples.

We can do that by extracting those chunks of code into anonymous functions.
Each anonymous function just takes the current item as its parameter, applies
the operation to that item, and returns it.

Here's the email example aRer extracting an anonymous function:

$func = function ($customer) {

return $customer->email;

};

$results = [];

foreach ($items as $item) {

$result = $func($item);

$results[] = $result;

}

return $results;

...and here's the inventory example aRer the same extraction:

13 Part 1. A Bit of Theory

$func = function ($item) {

return [

'product' => $item->productName,

'total_value' => $item->quantity * $item->price,

];

};

$results = [];

foreach ($items as $item) {

$result = $func($item);

$results[] = $result;

}

return $results;

Now there's a big block of identical code in both examples that we can extract
into something reusable. If we bundle that up into its own function, we've
implemented a higher order function called map!

function map($items, $func)

{

$results = [];

foreach ($items as $item) {

$results[] = $func($item);

}

return $results;

}

$customerEmails = map($customers, function ($customer) {

return $customer->email;

});

Chapter 2. Higher Order Functions 14

$stockTotals = map($inventoryItems, function ($item) {

return [

'product' => $item->productName,

'total_value' => $item->quantity * $item->price,

];

});

Functional Building Blocks
Map is just one of dozens of powerful higher order functions for working with
arrays. We'll talk about a lot of them in later examples, but let's cover some of
the fundamental ones in depth Mrst.

Each

Each is no more than a foreach loop wrapped inside of a higher order function:

function each($items, $func)

{

foreach ($items as $item) {

$func($item);

}

}

You're probably asking yourself, "why would anyone bother to do this?" Well for
one, it hides the implementation details of the loop (and we hate loops.)

Imagine a world where PHP didn't have a foreach loop. Our implementation of
each would look something like this:

function each($items, $func)

{

for ($i = 0; $i < count($items); $i++) {

$func($items[$i]);

}

}

15 Part 1. A Bit of Theory

In that world, having an abstraction around "do this with every item in the
array" seems pretty reasonable. It would let us take code that looks like this:

for ($i = 0; $i < count($productsToDelete); $i++) {

$productsToDelete[$i]->delete();

}

...and rewrite it like this, which is a bit more expressive:

each($productsToDelete, function ($product) {

$product->delete();

});

Each also becomes an obvious improvement over using foreach directly as soon
as you get into chaining functional operations, which we'll cover later in the
book.

A couple things to remember about each:

• If you're tempted to use any sort of collecting variable, each is not the
function you should be using.

// Bad! Use `map` instead.

each($customers, function ($customer) use (&$emails) {

$emails[] = $customer->email;

});

// Good!

$emails = map($customers, function ($customer) {

return $customer->email;

});

• Unlike the other basic array operations, each doesn't return anything.
That's a clue that it should be reserved for performing actions, like deleting
products, shipping orders, sending emails, etc.

Chapter 3. Functional Building Blocks 16

each($orders, function ($order) {

$order->markAsShipped();

});

Map

We've talked about map a bit already, but it's an important one and deserves its
own reference.

Map is used to transform each item in an array into something else. Given some
array of items and a function, map will apply that function to every item and
spit out a new array of the same size.

Here's what map looks like as a loop:

function map($items, $func)

{

$result = [];

foreach ($items as $item) {

$result[] = $func($item);

}

return $result;

}

Remember, every item in the new array has a relationship with the
corresponding item in the original array. A good way to remember how map

works is to think of there being a mapping between each item in the old array
and the new array.

Map is a great tool for jobs like:

• Extracting a Meld from an array of objects, such as mapping customers
into their email addresses:

17 Part 1. A Bit of Theory

$emails = map($customers, function ($customer) {

return $customer->email;

});

• Populating an array of objects from raw data, like mapping an array of
JSON results into an array of domain objects:

$products = map($productJson, function ($productData) {

return new Product($productData);

});

• Converting items into a new format, for example mapping an array of
prices in cents into a displayable format:

$displayPrices = map($prices, function ($price) {

return '$' . number_format($price / 100, 2);

});

Map vs. Each

A common mistake I see people make is using map when they should have used
each.

Consider our each example from before where we were deleting products. You
could implement the same thing using map and it would technically have the
same eLect:

map($productsToDelete, function ($product) {

$product->delete();

});

Although this code works, it's semantically incorrect. We didn't map anything
here. This code is going to go through all the trouble of creating a new array
for us where every element is null and we aren't going to do anything with it.

Map is about transforming one array into another array. If you aren't
transforming anything, you shouldn't be using map.

Chapter 3. Functional Building Blocks 18

As a general rule, you should be using each instead of map if any of the following
are true:

1. Your callback doesn't return anything.

2. You don't do anything with the return value of map.

3. You're just trying to perform some action with every element in an
array.

Filter

Say we had a list of products and we needed to know which ones were out of
stock. Without using any higher order functions, we could write that code like
this:

$outOfStockProducts = [];

foreach ($products as $product) {

if ($product->isOutOfStock()) {

$outOfStockProducts[] = $product;

}

}

return $outOfStockProducts;

Similarly, if we wanted the products that cost more than $100, we could write
this:

$expensiveProducts = [];

foreach ($products as $product) {

if ($product->price > 100) {

$expensiveProducts[] = $product;

}

}

return $expensiveProducts;

19 Part 1. A Bit of Theory

The only diLerence between these two examples is the conditional. We can
abstract that diLerence away by extracting anonymous functions, like we did
with map:

$func = function ($product) {

return $product->isOutOfStock();

};

$results = [];

foreach ($items as $item) {

if ($func($item)) {

$results[] = $item;

}

}

return $results;

$func = function ($product) {

return $product->price > 100;

};

$results = [];

foreach ($items as $item) {

if ($func($item)) {

$results[] = $item;

}

}

return $results;

Bundling up what's leR gives us an implementation of a higher order function
called filter:

Chapter 3. Functional Building Blocks 20

function filter($items, $func)

{

$result = [];

foreach ($items as $item) {

if ($func($item)) {

$result[] = $item;

}

}

return $result;

}

$outOfStockProducts = filter($products, function ($product) {

return $product->isOutOfStock();

});

$expensiveProducts = filter($products, function ($product) {

return $product->price > 100;

});

The filter operation is used to 4lter out any elements of an array that you don't
want. You tell filter which elements to keep by passing a callback that returns
true if you want to keep the element, and false if you want it removed.

It's important to understand that filter doesn't actually change or transform
any of the items in the array; it just strips out the items you don't want. That
means that the items that make it into the new array are not only the same type
as the ones in the old array, they're the same items.

This is in stark contrast to map, which is used to create new items by applying
some operation to the existing items. You might map products into prices, but you
always filter products into a new array of products.

Reject

Sometimes it can be more expressive to specify the items we want to discard
instead of the items we want to keep.

21 Part 1. A Bit of Theory

Reject is a close cousin of filter that let's us do just that, simply by Nipping the
conditional:

- function filter($items, $func)

+ function reject($items, $func)

{

$result = [];

foreach ($items as $item) {

- if ($func($item)) {

+ if (! $func($item)) {

$result[] = $item;

}

}

return $result;

}

We can even implement reject in terms of filter just by negating the callback:

function reject($items, $func)

{

return filter($items, function ($item) use ($func) {

return ! $func($item);

});

}

Say we needed a list of products that are in stock and our Product class only
exposes an outOfStock method. An implementation using filter would look like
this:

$inStockProducts = filter($products, function ($product) {

return ! $product->isOutOfStock();

});

Chapter 3. Functional Building Blocks 22

By using filter, our code is saying "keep the products that are not out of stock."
It's technically correct, but sort of awkward to say. Compare that to an
implementation that uses reject:

$inStockProducts = reject($products, function ($product) {

return $product->isOutOfStock();

});

Now our code is saying, "discard the products that are out of stock". It's a subtle
diLerence, but I think the code is clearer as a result.

Reduce

Say we had a shopping cart of items and we needed to calculate the total price
of the cart. One way to do that would be to loop over all of the items in the cart
and keep a running tally of the total price:

$totalPrice = 0;

foreach ($cart->items as $item) {

$totalPrice = $totalPrice + $item->price;

}

return $totalPrice;

Now imagine another situation where we wanted to send an email to a group
of customers and we needed to generate a comma separated list of their emails
for the BCC line. We could build that string by looping over the customers and
concatenating their emails together, like so:

$bcc = '';

foreach ($customers as $customer) {

$bcc = $bcc . $customer->email . ', ';

}

return $bcc;

23 Part 1. A Bit of Theory

These examples are of course very similar, so what would it look like to create
an abstraction around this operation? Let's step through it line-by-line and see
if we can Mnd a way to extract a higher order function.

First, let's rename both $totalPrice and $bcc to something more general like
$accumulator since we are using it to build up our Mnal result:

$accumulator = 0;

foreach ($cart->items as $item) {

$accumulator = $accumulator + $item->price;

}

return $accumulator;

$accumulator = '';

foreach ($customers as $customer) {

$accumulator = $accumulator . $customer->email . ', ';

}

return $accumulator;

Comparing the Mrst two lines, there's still a small diLerence. Unlike filter and
map which both always start with an empty array, one of these examples begins
with a 0 while the other begins with an empty string:

$accumulator = 0;

foreach ($cart->items as $item) {

$accumulator = $accumulator + $item->price;

}

return $accumulator;

Chapter 3. Functional Building Blocks 24

$accumulator = '';

foreach ($customers as $customer) {

$accumulator = $accumulator . $customer->email . ', ';

}

return $accumulator;

We can get around this by extracting the initial value into a separate variable:

$initial = 0;

$accumulator = $initial;

foreach ($cart->items as $item) {

$accumulator = $accumulator + $item->price;

}

return $accumulator;

$initial = '';

$accumulator = $initial;

foreach ($customers as $customer) {

$accumulator = $accumulator . $customer->email . ', ';

}

return $accumulator;

Next if we look at the foreach loop, one example is looping over the cart items
and the other is looping over customers. We can generalize that by pulling out
a temporary variable called $items:

25 Part 1. A Bit of Theory

$items = $cart->items;

$initial = 0;

$accumulator = $initial;

foreach ($items as $item) {

$accumulator = $accumulator + $item->price;

}

return $accumulator;

$items = $customers;

$initial = '';

$accumulator = $initial;

foreach ($items as $item) {

$accumulator = $accumulator . $item->email . ', ';

}

return $accumulator;

Now the only diLerence between the two examples is how we are building our
$accumulator. In the cart example we're adding the item's price to the current
$accumulator, while in the email example we are concatenating the customer's
email with the $accumulator.

$items = $cart->items;

$initial = 0;

$accumulator = $initial;

foreach ($items as $item) {

$accumulator = $accumulator + $item->price;

}

return $accumulator;

Chapter 3. Functional Building Blocks 26

$items = $customers;

$initial = '';

$accumulator = $initial;

foreach ($items as $item) {

$accumulator = $accumulator . $item->email . ', ';

}

return $accumulator;

Normally we would extract these pieces of code into anonymous functions that
took the current item as their only parameter.

But in this case, the code we are trying to extract depends on both the current
item and what we've built up to that point in $accumulator.

We can accommodate this by taking both values as parameters in our
anonymous functions:

$items = $cart->items;

$callback = function ($totalPrice, $item) {

return $totalPrice + $item->price;

};

$initial = 0;

$accumulator = $initial;

foreach ($items as $item) {

$accumulator = $callback($accumulator, $item);

}

return $accumulator;

27 Part 1. A Bit of Theory

$items = $customers;

$callback = function ($bcc, $customer) {

return $bcc . $customer->email . ', ';

};

$initial = '';

$accumulator = $initial;

foreach ($items as $item) {

$accumulator = $callback($accumulator, $item);

}

return $accumulator;

Finally we have two blocks of identical code in both examples:

$items = $cart->items;

$callback = function ($totalPrice, $item) {

return $totalPrice + $item->price;

};

$initial = 0;

$accumulator = $initial;

foreach ($items as $item) {

$accumulator = $callback($accumulator, $item);

}

return $accumulator;

Chapter 3. Functional Building Blocks 28

$items = $customers;

$callback = function ($bcc, $customer) {

return $bcc . $customer->email . ', ';

};

$initial = '';

$accumulator = $initial;

foreach ($items as $item) {

$accumulator = $callback($accumulator, $item);

}

return $accumulator;

We can extract that code into a higher order function called reduce, which takes
all of the variables we extracted as parameters:

function reduce($items, $callback, $initial)

{

$accumulator = $initial;

foreach ($items as $item) {

$accumulator = $callback($accumulator, $item);

}

return $accumulator;

}

$totalPrice = reduce($cart->items, function ($totalPrice, $item) {

return $totalPrice + $item->price;

}, 0);

$bcc = reduce($customers, function ($bcc, $customer) {

return $bcc . $customer->email . ', ';

}, '');

29 Part 1. A Bit of Theory

With Great Power

The reduce operation is used to take some array of items and reduce it down to a
single value. It has no opinion about what that single value should be; it could
be a number, a string, an object, whatever you want, it doesn't matter.

It can even be used to reduce one array of items into another array, which
means we can even implement map and filter in terms of reduce.

Here's what map would look like:

function map($items, $func)

{

return reduce($items, function ($mapped, $item) use ($func) {

$mapped[] = $func($item);

return $mapped;

}, []);

}

Since reduce is a pretty low level functional operation that can turn an array
into just about anything, it's not always very expressive on its own. Sometimes
when I Mnd myself using reduce, what I really want is a higher level abstraction
built on top of reduce that communicates what I'm trying to do more clearly.

For instance, in our total cart price example we could create a new abstraction
on top of reduce called sum that simply sums the values returned from some
callback:

function sum($items, $callback)

{

return reduce($items, function ($total, $item) use ($callback) {

return $total + $callback($item);

}, 0);

}

$totalPrice = sum($cart->items, function ($item) {

return $item->price;

});

Chapter 3. Functional Building Blocks 30

In our BCC list example, we could use reduce to write a function like join

(ignoring the existing join function for a minute) that concatenates all of the values
returned from a callback:

function join($items, $callback)

{

return reduce($items, function ($string, $item) use ($callback) {

return $string . $callback($item);

}, '');

}

$bcc = join($customers, function ($customer) {

return $customer->email . ', ';

});

Between the four fundamental operations we've covered so far, reduce is
deMnitely the trickiest to wrap your head around. For a bit of practice, try and
reimplement filter in terms of reduce and see what you come up with.

Transforming Data
So back to our original example, how can we get this:

function getUserEmails($users)

{

$emails = [];

for ($i = 0; $i < count($users); $i++) {

$user = $users[$i];

if ($user->email !== null) {

$emails[] = $user->email;

}

}

return $emails;

}

31 Part 1. A Bit of Theory

...to look more like this?

SELECT email FROM users WHERE email IS NOT NULL

For starters, let's switch to a foreach loop so there's a little less noise:

function getUserEmails($users)

{

$emails = [];

foreach ($users as $user) {

if ($user->email !== null) {

$emails[] = $user->email;

}

}

return $emails;

}

All of a sudden this is starting to look a little more familiar. Doesn't the
highlighted code look a lot like what we extracted into map previously?

function getUserEmails($users)

{

$emails = [];

foreach ($users as $user) {

if ($user->email !== null) {

$emails[] = $user->email;

}

}

return $emails;

}

But if we try to implement getUserEmails using map, it doesn't quite work.

Chapter 4. Transforming Data 32

The point of map is to apply a transformation to every element in an array, so it
always returns an array that is the same size as the original. Our getUserEmails

function is only meant to return the subset of items where the $email Meld isn't
null.

When we need a subset, we use filter, but Mltering isn't quite right either.

Filter is meant to give you all of the elements in an array that satisfy some
condition, in our case whether or not $email is null. The problem is filter

would give us the users that have emails, and we want the email addresses
themselves.

Thinking in Steps

The problem we're facing right now is that we're trying to do too many things
at the same time. When I'm in a situation like this, the Mrst thing I do is try and
turn "I can't because..." into "I could if...".

For example:

I can't use map because it would be applied to every user, not just the users
with emails.

...becomes:

I could use map if I was only working with the users that have emails.

Well, getting just the users with email addresses sounds like a problem we can
solve with Mlter:

$usersWithEmails = filter($users, function ($user) {

return $user->email !== null;

});

And now that we are only dealing with users who do have emails, we can
remove the condition in our loop:

33 Part 1. A Bit of Theory

function getUserEmails($users)

{

$usersWithEmails = filter($users, function ($user) {

return $user->email !== null;

});

$emails = [];

foreach ($usersWithEmails as $user) {

$emails[] = $user->email;

}

return $emails;

}

Once the condition is gone, we can replace the loop with a map:

function getUserEmails($users)

{

$usersWithEmails = filter($users, function ($user) {

return $user->email !== null;

});

$emails = map($usersWithEmails, function ($user) {

return $user->email;

});

return $emails;

}

What we've done here is taken our original solution and split it up into two
distinct operations, where each operation has one clear responsibility.

Instead of having one block of code responsible for excluding any users
without emails and extracting the email from that user, we do the same work
in two separate steps.

Chapter 4. Transforming Data 34

As your code gets more complex, splitting things up like this starts to pay oL
in dividends because debugging a sequence of simple, independent operations
turns out to be much easier than debugging a single complex operation.

The Problem with Primitives

Even though it might still look a bit foreign, what we have now is simpler in a
number of ways:

1. We've eliminated the if statement by using filter to get rid of the users
that have no email address.

2. We've eliminated the $email collecting variable by using map to transform
our array of users into an array of emails.

3. We've eliminated the loop, opting to treat it as an implementation detail
of filter and map.

The last improvement I'd like to make is to get rid of the $usersWithEmails and
$emails temporary variables.

Usually the best way to get rid of a temporary variable is to use a refactoring
called "Inline Temp", where you replace all occurrences of that variable with
the expression assigned to it.

Inlining $emails is easy; we just return the result of map directly:

function getUserEmails($users)

{

$usersWithEmails = filter($users, function ($user) {

return $user->email !== null;

});

return map($usersWithEmails, function ($user) {

return $user->email;

});

}

...but the code starts to get a bit cryptic if we inline the $usersWithEmails variable:

35 Part 1. A Bit of Theory

http://refactoring.com/catalog/inlineTemp.html

function getUserEmails($users)

{

return map(filter($users, function ($user) {

return $user->email !== null;

}), function ($user) {

return $user->email;

});

}

Not very easy to read is it? It looks even worse if we use PHP's built-in array
functions, since they have an unintuitive parameter order:

function getUserEmails($users)

{

return array_map(function ($user) {

return $user->email;

}, array_filter($users, function ($user) {

return $user->email !== null;

}));

}

The reason this code is diOcult to understand is because it has to be read inside-
out.

This same problem arises when working with strings in PHP. For example,
here's some code that converts snake_case strings to camelCase:

$camelString = lcfirst(

str_replace(' ', '',

ucwords(str_replace('_', ' ', $snakeString))

)

);

Quick, in what order are things happening here? Takes a bit of eLort to parse,
doesn't it?

Chapter 4. Transforming Data 36

Since strings and arrays are primitive types, we have to operate on them from
the outside by passing them as parameters into other functions. This is what
leads to "inside-out" code, where you need to count the braces to Mgure out
what's happening Mrst.

Compare the "inside-out" example above to this imaginary syntax:

$camelString = $snakeString->replace('_', ' ')

->ucwords()

->replace(' ', '')

->lcfirst();

Much easier to understand right?

The diLerence is that we're treating $snakeString as an object instead of a
primitive type. By calling methods on the object directly instead of passing it
around as a parameter, all of a sudden our code reads leR to right, with the
operations appearing in the order that they're executed.

Arrays as Objects

Imagine for a second that we could call methods directly on an array. How
would that aLect our getUserEmails function?

function getUserEmails($users)

{

- $usersWithEmails = filter($users, function ($user) {

+ $usersWithEmails = $users->filter(function ($user) {

return $user->email !== null;

});

- $emails = map($usersWithEmails, function ($user) {

+ $emails = $usersWithEmails->map(function ($user) {

return $user->email;

});

return $emails;

}

37 Part 1. A Bit of Theory

If we inline $emails again, we're leR with the following:

function getUserEmails($users)

{

$usersWithEmails = $users->filter(function ($user) {

return $user->email !== null;

});

return $usersWithEmails->map(function ($user) {

return $user->email;

});

}

The diLerence is that this time $usersWithEmails is outside of our call to map

instead of inside. Now when we inline it, filter appears before map, and our
code reads leR to right instead of inside-out:

function getUserEmails($users)

{

return $users->filter(function ($user) {

return $user->email !== null;

})->map(function ($user) {

return $user->email;

});

}

Isn't that just delightful? This style of programming is commonly called a
collection pipeline, and we can totally do it in PHP.

Introducing Collections
A collection is an object that bundles up an array and lets us perform array
operations by calling methods on the collection instead of passing the array
into functions.

Here's a simple Collection class that just supports map and filter:

Chapter 5. Introducing Collections 38

class Collection

{

protected $items;

public function __construct($items)

{

$this->items = $items;

}

public function map($callback)

{

return new static(array_map($callback, $this->items));

}

public function filter($callback)

{

return new static(array_filter($this->items, $callback));

}

public function toArray()

{

return $this->items;

}

}

To use this in our getUserEmails example, all we need to do is wrap the $users

parameter in a new Collection, and convert the collection back to an array
before we return it:

function getUserEmails($users)

{

return (new Collection($users))->filter(function ($user) {

return $user->email !== null;

})->map(function ($user) {

return $user->email;

})->toArray();

}

39 Part 1. A Bit of Theory

Chaining methods aRer a traditional constructor can look a bit cluttered, so I'll
oRen create a named constructor to clean things up:

class Collection

{

protected $items;

public function __construct($items)

{

$this->items = $items;

}

public static function make($items)

{

return new static($items);

}

// ...

}

Using the named constructor saves us a set of parentheses at the call site and
looks a little tidier to my eyes:

function getUserEmails($users)

{

- return (new Collection($users))->filter(function ($user) {

+ return Collection::make($users)->filter(function ($user) {

return $user->email !== null;

})->map(function ($user) {

return $user->email;

})->toArray();

}

A Note on Mutability

You might have noticed in the examples so far that whenever we apply some
operation to an array, we always return a new array; we don't actually change
the original array.

Chapter 5. Introducing Collections 40

This is most obvious in our Collection implementation above, where we
explicitly return a new static in both map and filter:

class Collection

{

// ...

public function map($callback)

{

return new static(array_map($callback, $this->items));

}

public function filter($callback)

{

return new static(array_filter($this->items, $callback));

}

// ...

}

Compare that to this implementation where instead of returning a new
collection, we just replace the $items property:

class Collection

{

// ...

public function map($callback)

{

$this->items = array_map($callback, $this->items);

return $this;

}

public function filter($callback)

{

$this->items = array_filter($this->items, $callback);

return $this;

}

}

41 Part 1. A Bit of Theory

This might not seem like a big diLerence, but it can cause brain-melting,
spooky-action-at-a-distance bugs that will take all of the "fun" out of functional
programming.

Take a look at this code:

$employees = new Collection([

['name' => 'Mary', 'email' => 'mary@example.com', 'salaried' => true],

['name' => 'John', 'email' => 'john@example.com', 'salaried' => false],

['name' => 'Kelly', 'email' => 'kelly@example.com', 'salaried' => true],

]);

$employeeEmails = $employees->map(function ($employee) {

return $employee['email'];

});

$salariedEmployees = $employees->filter(function ($employee) {

return $employee['salaried'];

});

Can you spot the bug?

See that map call that gets us the $employeeEmails? If we just replace the $items

property instead of returning a new collection, that $employees variable actually
becomes a collection of emails as soon as map is Mnished. So when we try to
filter the list of employees, we're actually Mltering a list of emails. Yikes!

So yeah, don't do this.

Quacking Like... an Array?

The simple collection we've got so far is pretty neat but it's a bit annoying
having to constantly convert our data back and forth between collections and
arrays.

It would be nice if we could build a collection that we could use in place of
an array without our system noticing, and thankfully PHP makes that (mostly)
possible through a handful of interfaces.

Chapter 5. Introducing Collections 42

ArrayAccess

One of the special features of arrays is that you can get the element at a speciMc
oLset using square bracket notation.

$items = [1, 2, 3];

echo $items[2];

// => 3

If we try to do that with our Collection class, PHP throws a Mt:

$items = Collection::make([1, 2, 3]);

echo $items[2];

// => Fatal error: Cannot use object of type Collection as array!

We can add support for square bracket notation to our collection by
implementing the ArrayAccess interface, which consists of four methods:

interface ArrayAccess

{

// Allow the collection to respond to `isset($items['key'])` checks

abstract public function offsetExists($offset);

// Allow retrieving an item from the collection using `$items['key']`

abstract public function offsetGet($offset);

// Allow adding an item to the end of the collection using `$items[] =

// $foo` as well as at a specific key using `$items['key'] = $foo`

abstract public function offsetSet($offset, $value);

// Allow removing an item from the collection using `unset($items['key'])`

abstract public function offsetUnset($offset);

}

43 Part 1. A Bit of Theory

To add these methods to our Collection object, we just need to delegate the calls
to our underlying $items property:

class Collection implements ArrayAccess

{

protected $items;

public function __construct($items)

{

$this->items = $items;

}

public function offsetExists($offset)

{

return array_key_exists($this->items, $offset);

}

public function offsetGet($offset)

{

return $this->items[$offset];

}

public function offsetSet($offset, $value)

{

if ($offset === null) {

$this->items[] = $value;

} else {

$this->items[$offset] = $value;

}

}

public function offsetUnset($offset)

{

unset($this->items[$offset]);

}

// ...

}

Chapter 5. Introducing Collections 44

Now we can work with the oLsets in our collection exactly as if our collection
was a raw array:

$items = Collection::make([1, 2, 3]);

echo $items[2];

// => 3

$items[] = 4;

// => [1, 2, 3, 4]

isset($items[3]);

// => true

unset($items[0]);

// => [2, 3, 4]

Countable

The Countable interface allows an object to be passed to PHP's built-in count

function. Not quite as exciting as what we were able to do with ArrayAccess, but
I digress.

Here's the interface:

interface Countable

{

abstract public function count();

}

Here's what it looks like to implement:

45 Part 1. A Bit of Theory

class Collection implements ArrayAccess, Countable

{

protected $items;

public function __construct($items)

{

$this->items = $items;

}

public function count()

{

return count($this->items);

}

// ...

}

Now we can get the size of our collection just like it was a regular array, which
helps us achieve that nice polymorphic eLect we're looking for:

$items = Collection::make([1, 2, 3]);

count($items);

// => 3

As a side beneMt, now we have a count() method that we can chain with other
operations.

For example, we can combine it with filter to calculate the number of salaried
employees:

$employees = new Collection([

['name' => 'Mary', 'email' => 'mary@example.com', 'salaried' => true],

['name' => 'John', 'email' => 'john@example.com', 'salaried' => false],

['name' => 'Kelly', 'email' => 'kelly@example.com', 'salaried' => true],

]);

Chapter 5. Introducing Collections 46

$numberOfSalariedEmployees = $employees->filter(function ($employee) {

return $employee['salaried'];

})->count();

If you know you're working with a collection, chaining is pretty much always
the better way to use count().

Save the function version for situations where you might have a collection or a
regular array, because this just looks stupid:

// Gross!

$numberOfSalariedEmployees = count($employees->filter(function ($employee) {

return $employee['salaried'];

}));

IteratorAggregate

There's one other thing we can do with a regular array that we still can't do with
our collection, and that's iterate over it using a foreach loop.

You might not know this, but you actually can use foreach to iterate over an
object's public properties, no extra programming required:

class Foo

{

public $bar = 'baz';

public $qux = 'norf';

}

$foo = new Foo;

foreach ($foo as $property => $value) {

echo $property . ' -> ' . $value;

}

// => bar -> baz

// => qux -> norf

47 Part 1. A Bit of Theory

If you didn't already know this, it's probably because iterating over an object's
public properties isn't really all that useful.

What would be useful is if we could tell foreach to iterate over our $items

property, and the IteratorAggregate interface lets us do that.

To implement IteratorAggregate, we need to add a getIterator method to our
collection that returns a Traversable.

The easiest way to do that is to return our $items property wrapped up in an
ArrayIterator:

class Collection implements ArrayAccess, Countable, IteratorAggregate

{

protected $items;

public function __construct($items)

{

$this->items = $items;

}

public function getIterator()

{

return new ArrayIterator($this->items);

}

// ...

}

Now we can pass our collection into foreach and iterate over the $items just like
we were directly iterating over a regular array:

Chapter 5. Introducing Collections 48

http://php.net/manual/en/class.traversable.php
http://php.net/manual/en/class.arrayiterator.php

$collection = Collection::make([1, 2, 3]);

foreach ($collection as $item) {

echo $item;

}

// => 1

// => 2

// => 3

This is pretty cool, but with any luck, when you're done reading this book you'll
never want to do it.

Which leads us to...

The Golden Rule of Collection Programming

Never use a foreach loop outside of a collection!

Every time you use a foreach loop, you're doing it to accomplish something
else, and I promise you that "something else" already has a name.

Need to loop over an array to perform some operation on each item and stuL
the result into another array? You don't need to loop, you need to map.

Need to loop over an array to strip out the items that don't match some criteria?
You don't need to loop, you need to 4lter.

Pipeline programming is about operating at a higher level of abstraction.
Instead of doing things with the items in a collection, you do things to the
collection itself.

Map it, Mlter it, reduce it, sum it, zip it, reverse it, transpose it, Natten it, group
it, count it, chunk it, sort it, slice it, search it; if you can do it with a foreach loop,
you can do it with a collection method.

As soon as you elevate arrays from primitive types to objects that can have
their own behavior, there's no reason to ever use a foreach loop outside of the
collection itself, and I'm going to prove it to you.

49 Part 1. A Bit of Theory

From this point forward, you won't see a single foreach anywhere other than
encapsulated inside a collection method.

Let the games begin!

Chapter 5. Introducing Collections 50

A Lot of Practice

Now that you have a pretty good grasp of the fundamentals, let's put them to
use and learn some new tricks along the way.

We've seen how we could write our own Collection, but for these examples
we're going to use an oL-the-shelf implementation.

If you're familiar with any of my work outside of this book, you probably know
that I'm a big fan of the Laravel framework. Laravel ships with a very Nexible
and feature-rich Collection class, and since it's pretty portable and easy to pull
into other projects, we'll use that implementation going forward.

You can create a Laravel Collection in three ways:

1. Passing an array to the traditional constructor:

$collection = new Collection($items);

2. Using the make named constructor:

$collection = Collection::make($items);

3. Using the collect() helper function:

$collection = collect($items);

Personally, I love the terseness of the helper function and since it also saves us
some space in the code samples, so we'll roll with that approach.

If you'd like to follow along and play with these examples yourself, you can pull
in the library we'll be using via Composer:

composer require illuminate/support

Remember, even though we're using a speciMc library for these examples, these
ideas are completely portable and can be applied with any decent collection
implementation across many programming languages.

Let's get started!

Pricing Lamps and Wallets
A while back I came across a little programming challenge that Shopify were
posing to potential student interns.

Given a JSON feed of products from a store, 4gure out how much it would
cost to buy every variant of every single lamp and wallet that store has for
sale.

Here's an example of what the JSON feed looks like, simpliMed a bit for brevity:

{

"products": [

{

"title": "Small Rubber Wallet",

"product_type": "Wallet",

"variants": [

{ "title": "Blue", "price": 29.33 },

{ "title": "Turquoise", "price": 18.50 }

]

},

{

"title": "Sleek Cotton Shoes",

"product_type": "Shoes",

"variants": [

{ "title": "Sky Blue", "price": 20.00 }

]

},

Chapter 6. Pricing Lamps and Wallets 52

{

"title": "Intelligent Cotton Wallet",

"product_type": "Wallet",

"variants": [

{ "title": "White", "price": 17.97 }

]

},

{

"title": "Enormous Leather Lamp",

"product_type": "Lamp",

"variants": [

{ "title": "Azure", "price": 65.99 },

{ "title": "Salmon", "price": 1.66 }

]

},

// ...

]

}

So we know we're going to have a bunch of diLerent products in there, some of
which have a product_type of "Lamp" or "Wallet", and some of which don't. Each
product also has a number of variants, and the variants are what actually have
prices.

First things Mrst, let's grab the products out of the JSON and wrap them in a
new collection:

$url = 'http://shopicruit.myshopify.com/products.json';

$productJson = json_decode(file_get_contents($url), true);

$products = collect($productJson['products']);

We'll use this imperative solution as a starting point:

53 Part 2. A Lot of Practice

$totalCost = 0;

// Loop over every product

foreach ($products as $product) {

$productType = $product['product_type'];

// If the product is a lamp or wallet...

if ($productType == 'Lamp' || $productType == 'Wallet') {

// Loop over the variants and add up their prices

foreach ($product['variants'] as $productVariant) {

$totalCost += $productVariant['price'];

}

}

}

return $totalCost;

So where do we start?

Replace Conditional with Filter

Our goal is to take this one big foreach loop and Mgure out how we can break it
down into a series of simple, independent, chainable steps.

The Mrst thing that sticks out to me is this if statement:

$totalCost = 0;

foreach ($products as $product) {

$productType = $product['product_type'];

Chapter 6. Pricing Lamps and Wallets 54

if ($productType == 'Lamp' || $productType == 'Wallet') {

foreach ($product['variants'] as $productVariant) {

$totalCost += $productVariant['price'];

}

}

}

return $totalCost;

We're looping over all of the products, but we only do any work if the product
is a lamp or a wallet.

If we Mlter out the other products in advance, we can totally eliminate that
conditional:

$lampsAndWallets = $products->filter(function ($product) {

$productType = $product['product_type'];

return $productType == 'Lamp' || $productType == 'Wallet';

});

$totalCost = 0;

foreach ($lampsAndWallets as $product) {

foreach ($product['variants'] as $productVariant) {

$totalCost += $productVariant['price'];

}

}

return $totalCost;

Replace || with Contains

See this line where we check if the $productType is a "Lamp" or a "Wallet"?

$lampsAndWallets = $products->filter(function ($product) {

$productType = $product['product_type'];

return $productType == 'Lamp' || $productType == 'Wallet';

});

55 Part 2. A Lot of Practice

A little trick I use to simplify comparisons like this is to use an in_array check:

$lampsAndWallets = $products->filter(function ($product) {

return in_array($product['product_type'], ['Lamp', 'Wallet']);

});

Instead of checking if the product type is an x or a y or a z, in_array let's us say
"here's a list of the product types we want, is this product in that list?"

The collection equivalent of in_array is contains, and it's a nice improvement
because it removes any ambiguity about parameter order:

$lampsAndWallets = $products->filter(function ($product) {

return collect(['Lamp', 'Wallet'])->contains($product['product_type']);

});

Reduce to Sum

Looking at what we have now, what's the next thing we can break out into it's
own simple step?

$lampsAndWallets = $products->filter(function ($product) {

return collect(['Lamp', 'Wallet'])->contains($product['product_type']);

});

$totalCost = 0;

foreach ($lampsAndWallets as $product) {

foreach ($product['variants'] as $productVariant) {

$totalCost += $productVariant['price'];

}

}

return $totalCost;

Chapter 6. Pricing Lamps and Wallets 56

In highlighted code above, I can see at least two separate concerns:

1. Getting the price of each product variant.

2. Summing the prices to get a total cost.

If we split these up, we can use reduce to replace step 2:

$lampsAndWallets = $products->filter(function ($product) {

return collect(['Lamp', 'Wallet'])->contains($product['product_type']);

});

// Get all of the product variant prices

$prices = collect();

foreach ($lampsAndWallets as $product) {

foreach ($product['variants'] as $productVariant) {

$prices[] = $productVariant['price'];

}

}

// Sum the prices to get a total cost

$totalCost = $prices->reduce(function ($total, $price) {

return $total + $price;

}, 0);

return $totalCost;

Remember what I said earlier about how you can oRen replace reduce with a
more expressive operation? Here we can just use sum which turns our reduce call
into one simple line:

$lampsAndWallets = $products->filter(function ($product) {

return collect(['Lamp', 'Wallet'])->contains($product['product_type']);

});

57 Part 2. A Lot of Practice

// Get all of the product variant prices

$prices = collect();

foreach ($lampsAndWallets as $product) {

foreach ($product['variants'] as $productVariant) {

$prices[] = $productVariant['price'];

}

}

return $prices->sum();

Replace Nested Loop with FlatMap

So what about this chunk in the middle?

$lampsAndWallets = $products->filter(function ($product) {

return collect(['Lamp', 'Wallet'])->contains($product['product_type']);

});

$prices = collect();

foreach ($lampsAndWallets as $product) {

foreach ($product['variants'] as $productVariant) {

$prices[] = $productVariant['price'];

}

}

return $prices->sum();

It looks like we're trying to map product variants into their prices, but we're
starting with a collection of products, not a collection of variants. So how can
we build one big collection of variants to map into their prices?

One thing that gets us a little bit closer is to map each product into just its
variants:

$variants = $lampsAndWallets->map(function ($product) {

return $product['variants'];

});

Chapter 6. Pricing Lamps and Wallets 58

The issue we have now is that we're stuck with a collection of arrays of variants,
not just one big list of variants:

[

// ...

[

{ "title": "Blue", "price": 29.33 },

{ "title": "Turquoise", "price": 18.50 }

],

[

{ "title": "Sky Blue", "price": 20.00 }

],

[

{ "title": "White", "price": 17.97 }

],

{ "title": "Azure", "price": 65.99 },

{ "title": "Salmon", "price": 1.66 }

],

// ...

]

Fortunately for us, there's a method for this!

Flatten is a collection operation that Nattens an arbitrarily deep collection to
a single level. It takes a $depth parameter (defaulting to inMnity) that's used to
control how many levels it should Natten.

Since we only need to Natten one level, so we can Natten our product variant
collection like so:

$variants = $lampsAndWallets->map(function ($product) {

return $product['variants'];

})->flatten(1);

Using map and flatten together like this is so common that a lot of collection
implementations oLer single method called flatMap that combines them:

59 Part 2. A Lot of Practice

$variants = $lampsAndWallets->flatMap(function ($product) {

return $product['variants'];

});

This gives us the Nat collection of product variants we've been looking for:

[

// ...

{ "title": "Blue", "price": 29.33 },

{ "title": "Turquoise", "price": 18.50 },

{ "title": "Sky Blue", "price": 20.00 },

{ "title": "White", "price": 17.97 },

{ "title": "Azure", "price": 65.99 },

{ "title": "Salmon", "price": 1.66 },

// ...

]

Now that we have all of the product variants in a single collection, we can use
map to get their prices and get rid of both foreach loops:

$lampsAndWallets = $products->filter(function ($product) {

return collect(['Lamp', 'Wallet'])->contains($product['product_type']);

});

$variants = $lampsAndWallets->flatMap(function ($product) {

return $product['variants'];

});

$prices = $variants->map(function ($productVariant) {

return $productVariant['price'];

});

return $prices->sum();

At this point, we can collapse this whole thing into a single pipeline:

Chapter 6. Pricing Lamps and Wallets 60

return $products->filter(function ($product) {

return collect(['Lamp', 'Wallet'])->contains($product['product_type']);

})->flatMap(function ($product) {

return $product['variants'];

})->map(function ($productVariant) {

return $productVariant['price'];

})->sum();

This is already pretty fantastic, but believe it or not we can still make this
shorter.

Plucking for Fun and Pro:t

Much like flatMap is a shortcut for mapping a collection and then Nattening it
by one, pluck is a shortcut for mapping a single Meld out of each element in a
collection.

For example, if we had a collection of users and we needed to get their email
addresses, we could write it like this using map:

$emails = $users->map(function ($user) {

return $user['email'];

});

...or we could write it like this using pluck:

$emails = $users->pluck('email');

In our case, we can use pluck to get the prices of the product variants:

return $products->filter(function ($product) {

return collect(['Lamp', 'Wallet'])->contains($product['product_type']);

})->flatMap(function ($product) {

return $product['variants'];

})->pluck('price')->sum();

61 Part 2. A Lot of Practice

Let me also tell you a little secret about sum: It takes an optional parameter that
works just like pluck!

So we can replace ->pluck('price')->sum() with just ->sum('price'), leaving us
with this as our Mnal solution:

return $products->filter(function ($product) {

return collect(['Lamp', 'Wallet'])->contains($product['product_type']);

})->flatMap(function ($product) {

return $product['variants'];

})->sum('price');

Not a single loop, conditional, or temporary variables to be found. Pretty
elegant if you ask me!

CSV Surgery 101
That last example was a bit of a monster, so here's one that's more of a quick
tip.

Recently I was working on a project where I needed to import some data from
a spreadsheet, and the customer had some data mushed together in a single
column that I needed to extract.

The annoying part was that the data was a little inconsistent, with any given
entry being in one of three formats:

1. {DepartmentName}_{SupervisorName}_{ShiftId}

2. {DepartmentName}_{ShiftId}

3. {ShiftId}

Thankfully all I needed was the ShiftId from each entry. So given a list of these
strings, how can we get the ShiftId from each one?

Let's assume we're starting with an array that contains just the data from this
column:

Chapter 7. CSV Surgery 101 62

$shifts = [

'Shipping_Steve_A7',

'Sales_B9',

'Support_Tara_K11',

'J15',

'Warehouse_B2',

'Shipping_Dave_A6',

];

...and we want to end up with an array that looks like this:

$shiftIds = [

'A7',

'B9',

'K11',

'J15',

'B2',

'A6',

];

Since we're transforming every element in the Mrst array into a corresponding
element in the second array, I think we can safely say this is going to be some
kind of map operation:

$shiftIds = collect($shifts)->map(function ($shift) {

// How do we get the shift ID?

});

So what transformation do we need to apply to get that ShiftId piece?

The ShiftId always comes aRer the last underscore, so one approach would be
to Mnd the position of the last underscore, then grab the substring from that
position onwards.

We can do that with strrpos to Mnd the last underscore and substr to extract the
substring:

63 Part 2. A Lot of Practice

$shiftIds = collect($shifts)->map(function ($shift) {

$underscorePosition = strrpos($shift, '_');

$substringOffset = $underscorePosition + 1;

return substr($shift, $substringOffset);

});

If we run this against our data set above, we get this result:

$shifts = [

'A7',

'B9',

'K11',

'15',

'B2',

'A6',

];

Can you spot the error?

$shifts = [

'A7',

'B9',

'K11',

'15',

'B2',

'A6',

];

That line should be J15, but we lost the J!

The problem is that strrpos returns false if no underscore is found, and since
we have to add 1 to the underscore position to grab the substring from the
right oLset, we end up truncating the Mrst character of any shiR that has no
underscores:

Chapter 7. CSV Surgery 101 64

$shift = 'J15';

$underscorePosition = strrpos($shift, '_');

// => false

$substringOffset = $underscorePosition + 1;

// => false + 1 == 1

$shiftId = substr($shift, $substringOffset);

// => 'J15' from position 1 to end == '15'

So if we're going to use this approach, we need to check for underscores Mrst:

$shiftIds = collect($shifts)->map(function ($shift) {

if (strrpos($shift, '_') !== false) {

$underscorePosition = strrpos($shift, '_');

$substringOffset = $underscorePosition + 1;

return substr($shift, $substringOffset);

} else {

return $shift;

}

});

I'm sorry but this code is gross. We can do better!

Everything is Better as a Collection

It's really easy to make mistakes when you're keeping track of character oLsets
and dealing with substrings. Let's shiR our thinking a little bit and solve this
problem in a better way.

Remember the three diLerent formats we started with?

1. {DepartmentName}_{SupervisorName}_{ShiftId}

2. {DepartmentName}_{ShiftId}

3. {ShiftId}

65 Part 2. A Lot of Practice

Each one of these formats is made up of some number of parts, separated by
an underscore. We just want the last part.

Instead of looking for the last underscore, let's just split the string into its parts
using explode:

$shiftIds = collect($shifts)->map(function ($shift) {

// $shift => 'Shipping_Steve_A7'

$parts = explode('_', $shift);

// $parts => ['Shipping', 'Steve', 'A7']

});

The nice thing about explode is if you give it a string that doesn't contain the
delimiter you specify, it just gives you your string back:

explode('_', ['J15']);

// => 'J15'

Since all we need now is the last element in the array, we could grab it using
PHP's end function:

$shiftIds = collect($shifts)->map(function ($shift) {

$parts = explode('_', $shift);

return end($parts);

});

...or we could store the parts in a collection and use the last method:

$shiftIds = collect($shifts)->map(function ($shift) {

return collect(explode('_', $shift))->last();

});

I like the collection version because we can do it one line and last is a bit more
expressive than end.

Collections are a great tool for a lot of string processing situations. We'll cover
another use case in the next example!

Chapter 7. CSV Surgery 101 66

Binary to Decimal
I've been learning Elixir (the functional programming language) through the
exercises at exercism.io and one of the challenges was to take a string of binary
and convert it to its decimal counterpart.

So given a string like "100110101", we need to write a function that spits out 309.

A Quick Refresher

If you haven't done a ton of work with binary in the past, here's the 30 second
crash course.

In decimal, or base 10, every column represents a power of 10, so in the

number 3716, the 6 is in the ones column (100), the 1 is in the tens column (101),

the 7 is in the hundreds column (102), and the 3 is in the thousands column

(103).

That means 3716 is equivalent to (3 x 103) + (7 x 102) + (1 x 101) + (6 x 100).

Binary works the same way except its a base 2 system, so every column
represents a power of 2 instead of a power of 10.

So the binary number 11010 is the same as (1 x 24) + (1 x 23) + (0 x 22) + (1 x 21) +

(0 x 20), or 26 in decimal.

Using a For Loop

One way we could solve this would be to iterate over the characters in the
binary string, convert each character to decimal, and add them together.

That solution might look something like this:

67 Part 2. A Lot of Practice

http://elixir-lang.org/
http://exercism.io/

function binaryToDecimal($binary)

{

$total = 0;

$exponent = strlen($binary) - 1;

for ($i = 0; $i < strlen($binary); $i++) {

$decimal = $binary[$i] * (2 ** $exponent);

$total += $decimal;

$exponent--;

}

return $total;

}

This sort of code look familiar? Just the potential for oL-by-one errors here is
enough to make me run for the hills!

Breaking It Down

The most important thing I want you to learn from this book is how to stop
trying to do so many things at once and instead solve problems in small, simple
steps.

Let's imagine for a second that we weren't allowed to use temporary variables
to keep track of things oL to the side. How can we solve this problem if we're
only allowed to perform operations on the entire data set as a whole?

We can't do much useful work with the binary string directly, but what if we
split the string into columns Mrst? We can do that using str_split, and then
wrap the result in a collection:

function binaryToDecimal($binary)

{

// $binary => "11010"

$columns = collect(str_split($binary));

// $columns => ["1", "1", "0", "1", "0"]

}

Chapter 8. Binary to Decimal 68

Ok, so we've got a collection of the columns in our string. What can we do next
that will get us a step closer to the solution?

Well in our original solution, we talked about converting or transforming the
binary values to their decimal values, which sounds like something we could
do with map right?

The problem is we need to know which exponent is associated with each
column, but it looks like all we have is the column value itself.

There is one other piece of data we have hidden out of site here though: the
column keys.

$columns = [

0 => "1",

1 => "1",

2 => "0",

3 => "1",

4 => "0",

];

Those column keys do look like the exponents we need, but they're backwards.
The Mrst column has a key of 0 but we need it to have a key of 4...

Reversing the Collection

So how do we Mx a backwards collection? We reverse it!

The Laravel Collection object has a reverse method, but it reverses the keys as
well:

$columns->reverse();

// => [

// 4 => "0",

// 3 => "1",

// 2 => "0",

// 1 => "1",

// 0 => "1",

//]

69 Part 2. A Lot of Practice

Thankfully we can get around this by using the values method on the reversed
collection, which re-keys the collection back to a normal 0-based index:

function binaryToDecimal($binary)

{

// $binary => "11010"

$columns = collect(str_split($binary))

->reverse()

->values();

// => [

// 0 => "0",

// 1 => "1",

// 2 => "0",

// 3 => "1",

// 4 => "1",

//]

}

Now that we've got our columns matched up with their exponents, we're ready
to convert each column to decimal.

Mapping with Keys

So far any time we've used map we've only taken a single parameter in the
callback, but the Laravel Collection actually gives us the key as the second
parameter as well.

This makes it really easy for us to map the binary values to their corresponding
decimal value:

function binaryToDecimal($binary)

{

// $binary => "11010"

$columns = collect(str_split($binary))

->reverse()

Chapter 8. Binary to Decimal 70

->values()

->map(function ($column, $exponent) {

return $column * (2 ** $exponent);

});

// => [0, 2, 0, 8, 16]

}

Once we've got all of the decimal values, we can calculate the total using sum like
we did in the Shopify example:

function binaryToDecimal($binary)

{

return collect(str_split($binary))

->reverse()

->values()

->map(function ($column, $exponent) {

return $column * (2 ** $exponent);

})->sum();

}

The nicest thing about this refactoring to me is that there's no more temporary
state. No taking some data and storing it oL to the side to keep track of
something while the code goes to do some other work.

The biggest problem with temporary variables is that they force you to hold
the entire function in your head at all times to reason about how the function
works.

Contrast that with our pipeline solution. Every single operation is entirely
standalone. I don't need to understand the value of some temporary variable 6
lines up to know what reverse is really doing; it only depends on the output of
the previous operation and nothing else. To me, that's elegance.

Alternatively, you could've just used PHP's built-in bindec function ;)

71 Part 2. A Lot of Practice

http://php.net/manual/en/function.bindec.php
http://php.net/manual/en/function.bindec.php

What's Your GitHub Score?
Here's one that originally came out of an interview question someone shared
on Reddit.

GitHub provides a public API endpoint that returns all of a user's recent public
activity. The JSON response it gives you is an array of objects shaped generally
like this (simpliMed a bit for brevity):

[

{

"id": "3898913063",

"type": "PushEvent",

"public": true,

"actor": "adamwathan",

"repo": "tightenco/jigsaw",

"payload": { /* ... */ }

},

// ...

]

Check it out for yourself by making a GET request to this URL:

https://api.github.com/users/{your-username}/events

The interview task was to take these events and determine a user's "GitHub
Score", based on the following rules:

1. Each PushEvent is worth 5 points.

2. Each CreateEvent is worth 4 points.

3. Each IssuesEvent is worth 3 points.

4. Each CommitCommentEvent is worth 2 points.

5. All other events are worth 1 point.

Chapter 9. What's Your GitHub Score? 72

Loops and Conditionals

First let's take a look at an imperative approach to solving this problem:

function githubScore($username)

{

// Grab the events from the API, in the real world you'd probably use

// Guzzle or similar here, but keeping it simple for the sake of brevity.

$url = "https://api.github.com/users/{$username}/events";

$events = json_decode(file_get_contents($url), true);

// Get all of the event types

$eventTypes = [];

foreach ($events as $event) {

$eventTypes[] = $event['type'];

}

// Loop over the event types and add up the corresponding scores

$score = 0;

foreach ($eventTypes as $eventType) {

switch ($eventType) {

case 'PushEvent':

$score += 5;

break;

case 'CreateEvent':

$score += 4;

break;

case 'IssuesEvent':

$score += 3;

break;

case 'CommitCommentEvent':

$score += 2;

break;

73 Part 2. A Lot of Practice

default:

$score += 1;

break;

}

}

return $score;

}

Let's start cleaning!

Replace Collecting Loop with Pluck

First things Mrst, let's wrap the GitHub events in a collection:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

- $events = json_decode(file_get_contents($url), true);

+ $events = collect(json_decode(file_get_contents($url), true));

// ...

}

Now let's take a look at this Mrst loop:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = [];

foreach ($events as $event) {

$eventTypes[] = $event['type'];

}

Chapter 9. What's Your GitHub Score? 74

$score = 0;

foreach ($eventTypes as $eventType) {

switch ($eventType) {

case 'PushEvent':

$score += 5;

break;

// ...

}

}

return $score;

}

We know by know that any time we're transforming each item in an array into
something new we can use map right? In this case, the transformation is so
simple that we can even use pluck, so let's swap that out:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = $events->pluck('type');

$score = 0;

foreach ($eventTypes as $eventType) {

switch ($eventType) {

case 'PushEvent':

$score += 5;

break;

// ...

}

}

return $score;

}

75 Part 2. A Lot of Practice

Already four lines gone and a lot more expressive, nice!

Extract Score Conversion with Map

How about this second big loop with the switch statement?

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = $events->pluck('type');

$score = 0;

foreach ($eventTypes as $eventType) {

switch ($eventType) {

case 'PushEvent':

$score += 5;

break;

case 'CreateEvent':

$score += 4;

break;

case 'IssuesEvent':

$score += 3;

break;

case 'CommitCommentEvent':

$score += 2;

break;

default:

$score += 1;

break;

}

}

return $score;

}

Chapter 9. What's Your GitHub Score? 76

We're trying to sum up a bunch of scores here, but we're doing it using a
collection of event types.

Maybe this would be simpler if we could just sum a collection of scores instead?
Let's convert the event types to scores using map, then just return the sum of that
collection:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = $events->pluck('type');

$scores = $eventTypes->map(function ($eventType) {

switch ($eventType) {

case 'PushEvent':

return 5;

case 'CreateEvent':

return 4;

case 'IssuesEvent':

return 3;

case 'CommitCommentEvent':

return 2;

default:

return 1;

}

});

return $scores->sum();

}

This is a little bit better, but that nasty switch statement is really cramping our
style. Let's tackle that next.

77 Part 2. A Lot of Practice

Replace Switch with Lookup Table

Almost any time you have a switch statement like this, you can replace it with
an associative array lookup, where the case becomes the array key:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = $events->pluck('type');

$scores = $eventTypes->map(function ($eventType) {

$eventScores = [

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

];

return $eventScores[$eventType];

});

return $scores->sum();

}

This feels cleaner to me because looking up the score for an event seems like a
much more natural model of what we're trying to do vs. a conditional structure
like switch.

The problem is we've lost the default case, where all other events are given a
score of 1.

To get that behavior back, we need to check if our event exists in the lookup
table before trying to access it:

Chapter 9. What's Your GitHub Score? 78

function githubScore($username)

{

// ...

$scores = $eventTypes->map(function ($eventType) {

$eventScores = [

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

];

if (! isset($eventScores[$eventType])) {

return 1;

}

return $eventScores[$eventType];

});

return $scores->sum();

}

All of a sudden this doesn't really seem better than the switch statement, but
fear not, there's still hope!

Associative Collections

Everything is better as a collection, remember?

So far we've only used collections for traditional numeric arrays, but
collections oLer us a lot of power when working with associative arrays as well.

Have you ever heard of the "Tell, Don't Ask" principle? The general idea is
that you should avoid asking an object a question about itself to make another
decision about something you are going to do with that object. Instead, you
should push that responsibility into that object, so you can just tell it what you
need without asking questions Mrst.

79 Part 2. A Lot of Practice

How is that relevant in this example? I'm glad you asked! Let's take a look at
that if statement again:

$eventScores = [

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

];

if (! isset($eventScores[$eventType])) {

return 1;

}

return $eventScores[$eventType];

Here we are asking the lookup table if it has a value for a certain key, and if it
doesn't we return a default value.

Collections let us apply the "Tell, Don't Ask" principle in this situation with the
get method, which takes a key to look up and a default value to return if that key
doesn't exist!

If we wrap $eventScores in a collection, we can refactor the above code like so:

$eventScores = collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

]);

return $eventScores->get($eventType, 1);

Collapsing that down and putting it back into context of the entire function
gives us this:

Chapter 9. What's Your GitHub Score? 80

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = $events->pluck('type');

$scores = $eventTypes->map(function ($eventType) {

return collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

])->get($eventType, 1);

});

return $scores->sum();

}

Now we can collapse that entire thing down into a single pipeline:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

return $events->pluck('type')->map(function ($eventType) {

return collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

])->get($eventType, 1);

})->sum();

}

81 Part 2. A Lot of Practice

Extracting Helper Functions

Sometimes the bodies of operations like map can grow to several lines, like
looking up the event score has here.

We haven't talked about this much so far, but just because we're working with
collection pipelines doesn't mean we should throw out other good practices
like extracting logic into small functions.

In this case, I would extract both the API call and the score lookup into separate
functions, giving a solution like this:

function githubScore($username)

{

return fetchEvents($username)->pluck('type')->map(function ($eventType) {

return lookupEventScore($eventType);

})->sum();

}

function fetchEvents($username)

{

$url = "https://api.github.com/users/{$username}/events";

return collect(json_decode(file_get_contents($url), true));

}

function lookupEventScore($eventType)

{

return collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

])->get($eventType, 1);

}

Chapter 9. What's Your GitHub Score? 82

Encapsulating in a Class

What would it look like to fetch someone's GitHub score in a typical modern
PHP web app? Surely we wouldn't just have a bunch of global functions Noating
around calling each other right?

One approach is to create a class that works kind of like a namespace and
exposes static functions so you can control their visibility:

class GitHubScore

{

public static function forUser($username)

{

return self::fetchEvents($username)

->pluck('type')

->map(function ($eventType) {

return self::lookupScore($eventType);

})->sum();

}

private static function fetchEvents($username)

{

$url = "https://api.github.com/users/{$this->username}/events";

return collect(json_decode(file_get_contents($url), true));

}

private static function lookupScore($eventType)

{

return collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

])->get($eventType, 1);

}

}

83 Part 2. A Lot of Practice

With this class, I could make a call like GitHubScore::forUser('adamwathan') and
get a score back.

One of the issues with this approach is that because we're not working with
actual objects, we can't keep track of any state anymore. Instead, you end up
passing the same parameter around in a bunch of places because you don't
really have anywhere to store that data.

It's not too bad in this example, but you can see here we have to pass $username

into fetchEvents since otherwise the method has no way of knowing which
user's activity to fetch:

class GitHubScore

{

public static function forUser($username)

{

return self::fetchEvents($username)

->pluck('type')

->map(function ($eventType) {

return self::lookupScore($event['type']);

})->sum();

}

private static function fetchEvents($username)

{

$url = "https://api.github.com/users/{$this->username}/events";

return collect(json_decode(file_get_contents($url), true));

}

// ...

}

This can get ugly pretty fast when you've extracted a handful of small methods
that need access to the same data.

A neat trick I use in situations like this is to create what I've been calling private
instances.

Chapter 9. What's Your GitHub Score? 84

Instead of doing all of the work with static methods, I create an instance of the
class in the Mrst static method, then delegate all of the work to that instance.

Here's what it looks like:

class GitHubScore

{

private $username;

private function __construct($username)

{

$this->username = $username;

}

public static function forUser($username)

{

return (new self($username))->score();

}

private function score()

{

$this->events()->pluck('type')->map(function ($eventType) {

return $this->lookupScore($eventType);

})->sum();

}

private function events()

{

$url = "https://api.github.com/users/{$this->username}/events";

return collect(json_decode(file_get_contents($url), true));

}

85 Part 2. A Lot of Practice

private function lookupScore($eventType)

{

return collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

])->get($eventType, 1);

}

}

You get the same convenient static API, but internally you get to work with an
object that has it's own state, which keeps your method signatures short and
simple. Pretty neat stuL!

Formatting a Pull Request Comment
That last example was pretty heavy, so here's another quick one.

I run a small SaaS application called Nitpick CI that looks for PSR-2 violations
in GitHub pull requests and points them out by commenting on the oLending
lines.

A single line of code can have multiple PSR-2 violations, so at one point in the
review process I need to take the violations for a given line and turn them into
a single comment that I can post to GitHub.

The violation messages for one line start as a simple collection like this:

[

'Opening brace must be the last content on the line',

'Closing brace must be on a line by itself',

'Each PHP statement must be on a line by itself',

];

GitHub comments support Markdown, and I'd like to display these messages as
an unordered list, so from that array I need to generate this string:

Chapter 10. Formatting a Pull Request Comment 86

https://nitpick-ci.com

"- Opening brace must be the last content on the line\n- Closing brace must

be on a line by itself\n- Each PHP statement must be on a line by itself\n"

Let's get to work!

Concatenating in a Loop

Here's how we might've solved this problem using a procedural style:

private function buildComment($messages)

{

$comment = '';

foreach ($messages as $message) {

$comment .= "- {$message}\n";

}

return $comment;

}

Map and Implode

...and here's how we can solve it using collections:

private function buildComment($messages)

{

return $messages->map(function ($message) {

return "- {$message}\n";

})->implode('');

}

Both solutions are pretty short and easy to follow, but I love that the collection
solution is made up of single, independent operations.

In the concatenation-based solution, the function only makes sense as a whole,
but with the pipeline approach, every step is a complete and encapsulated
transformation that can stand on its own.

87 Part 2. A Lot of Practice

It's subtle, but as problems grow in complexity, being able to slice them up into
discrete operations that each work on the entire data set at once really helps
make code easier to understand.

Stealing Mail
In a recent project, I needed to write some tests that made sure certain emails
were being sent to the right email addresses.

To do this, I wrote my own fake in-memory mail implementation that would
intercept and store emails, allowing me to inspect them and make assertions
against them.

To make sure that emails were being sent to the correct people, I needed a
method that took an email address as a parameter and checked to see if any of
the sent messages contained that address in their recipients list.

public function test_new_users_are_sent_a_welcome_email()

{

$mailer = new InMemoryMailer;

Mail::swap($mailer);

$this->post('register', [

'name' => 'John Doe',

'email' => 'john@example.com',

'password' => 'secret',

]);

$this->assertTrue($mailer->hasMessageFor('john@example.com'));

}

Here's the relevant bits of the fake mailer:

Chapter 11. Stealing Mail 88

class InMemoryMailer

{

private $messages = [];

public function hasMessageFor($email)

{

// ???

}

// ...

}

For our purposes we'll say each message in the $messages array is just an
associative array shaped like this:

$message = [

'subject' => 'An example email subject!',

'recipients' => ['jane@example.com', 'john@example.com', 'mary@example.com'],

'body' => 'An example email body.',

];

So how could we implement the hasMessageFor method? Here's an imperative
solution for us to use as a starting point:

public function hasMessageFor($email)

{

foreach ($this->messages as $message) {

foreach ($message['recipients'] as $recipient) {

if ($recipient == $email) {

return true;

}

}

}

return false;

}

89 Part 2. A Lot of Practice

Replace Nested Check with Contains

The nested control structures in this solution have got to go. Let's tackle this
nested foreach loop Mrst:

public function hasMessageFor($email)

{

foreach ($this->messages as $message) {

foreach ($message['recipients'] as $recipient) {

if ($recipient == $email) {

return true;

}

}

}

return false;

}

All we're really trying to do here is check if $email is in the recipients list of the
current message. Or put another way, does the recipients list contain the email
address we're looking for?

Remember the contains method we touched on way back in the Mrst example?
If we wrap the recipients list in a collection, we can use contains here to get rid
of the second loop:

public function hasMessageFor($email)

{

foreach ($this->messages as $message) {

if (collect($message['recipients'])->contains($email)) {

return true;

}

}

return false;

}

That's one loop gone, now what about the Mrst one?

Chapter 11. Stealing Mail 90

Contains as a Higher Order Function

If I had to describe what we're really trying to do here, I'd say something like:

Check to see if our messages list contains a message with this email address in
its recipients list.

Up to this point we've used contains to look for a speciMc value, but checking to
see if something contains "a message with this email address in its recipients
list" is a bit more sophisticated than that.

Thankfully, contains is a lot more powerful than you might think! Not only can
you pass contains a value to check for, you can also pass a closure.

When we pass a closure, we're saying "check if the collection contains any items
where this expression is true." The closure gets called for every item in the
collection, and takes the item key as its Mrst parameter and the item value as its
second parameter.

For example, we could check if a collection of names contained any names
longer than 8 characters like so:

$names = collect(['Adam', 'Katharine', 'Jane', 'Steven']);

$names->contains(function ($i, $name) {

return strlen($name) > 8;

});

// => true

Using this new super power, we can replace the loop that iterates over our
$messages with a contains call that checks if any messages were sent to the
speciMed email address:

91 Part 2. A Lot of Practice

public function hasMessageFor($email)

{

return collect($this->messages)->contains(

function ($i, $message) use ($email) {

if (collect($message['recipients'])->contains($email)) {

return true;

}

return false;

}

);

}

We can simplify the closure too, since we're just returning true or false based
on the result of some condition:

public function hasMessageFor($email)

{

return collect($this->messages)->contains(

function ($i, $message) use ($email) {

- if (collect($message['recipients'])->contains($email)) {

- return true;

- }

- return false;

+ return (collect($message['recipients'])->contains($email);

}

);

}

Whenever possible, I try to make sure I'm working with a collection rather
than an array as early in the process as possible, so since we control the
InMemoryMailer class, I would just make $messages a collection from the
beginning:

class InMemoryMailer

{

private $messages;

Chapter 11. Stealing Mail 92

public function __construct()

{

$this->messages = new Collection;

}

// ...

}

That saves us a handful of characters in hasMessageFor and leaves us with this
solution, completely free of loops and conditionals:

public function hasMessageFor($email)

{

return $this->messages->contains(function ($i, $message) use ($email) {

return collect($message['recipients'])->contains($email);

});

}

For the sake of keeping the example short, we just used a simple associative
array for each $message, but in the actual implementation I had a dedicated
Message object that let me simplify the code a bit further:

public function hasMessageFor($email)

{

return $this->messages->contains(function ($i, $message) use ($email) {

return $message->hasRecipient($email);

});

}

Inside the Message object, hasRecipient just contains the code we previously had
inline:

class Message

{

// ...

93 Part 2. A Lot of Practice

public function hasRecipient($email)

{

return $this->recipients->contains($email);

}

}

Much more declarative than our original loop-based solution, and much more
expressive as a result!

Choosing a Syntax Handler
Here's another example from Nitpick CI.

Nitpick focuses on checking PHP Mles for PSR-2 violations, but I built it to be
extensible so that I could easily check other languages down the road.

To support this, the Nitpicker object that co-ordinates the bulk of the analysis
holds on to a collection of style checkers. Any time a Mle needs to be checked for
style violations, the Nitpicker looks up the appropriate style checker and asks it
for any violations it Mnds in the Mle.

A style checker needs to provide two methods:

1. A canCheck method that takes a ChangedFile object, and returns true or
false depending on whether that style checker can check that particular
Mle.

2. A check method that takes a ChangedFile object, and returns a collection of
Violation objects, representing style violations inside the Mle.

ARer a Mle is checked, I create a new CheckedFile object, passing the original Mle
and the detected violations into the constructor.

If I don't happen to have a style checker that can check that Mle, I just create a
new CheckedFile with an empty collection of violations.

Here's what checking a Mle looks like at a high level:

Chapter 12. Choosing a Syntax Handler 94

https://nitpick-ci.com

class Nitpicker

{

// ...

private function checkFile($file)

{

if ($this->hasCheckerFor($file)) {

$checker = $this->getCheckerFor($file);

$violations = $checker->check($file);

return new CheckedFile($file, $violations);

} else {

return new CheckedFile($file, []);

}

}

// ...

}

Let's look at how hasCheckerFor and getCheckerFor could be implemented.

Looking for a Match

Before we can check a Mle, we need to make sure we actually have a checker
capable of doing the checking, right? Here's how we might implement
hasCheckerFor using an imperative approach:

private function hasCheckerFor($file)

{

foreach ($this->checkers as $checker) {

if ($checker->canCheck($file)) {

return true;

}

}

return false;

}

95 Part 2. A Lot of Practice

This is the same pattern we ran into in the "Finding an Email" example, and we
can refactor it to use contains in the same way:

private function hasCheckerFor($file)

{

return $this->checkers->contains(function ($i, $checker) use ($file)) {

return $checker->canCheck($file);

}

}

Instead of looping over all of the checkers manually to see if there's any that
can do the check, we just ask:

"Does our collection of checkers contain a checker that can check this 4le?"

Great! Now how about actually retrieving the checker we need?

Getting the Right Checker

Using an imperative style, getting the matching checker looks a lot like
checking to see if we have a matching checker in the Mrst place:

private function getCheckerFor($file)

{

foreach ($this->checkers as $checker) {

if ($checker->canCheck($file)) {

return $checker;

}

}

}

Instead of returning true or false when we Mnd a matching checker, we just
return the $checker itself.

So how can we refactor this using collection methods?

Chapter 12. Choosing a Syntax Handler 96

Replace Iteration with First

The collection class has a first method that returns the Mrst element in the
collection:

collect([1, 2, 3])->first();

// => 1

Okay, so what? Well, just like contains, first can also take a closure.

When you pass a closure to first, you're saying "give me the Mrst element
where this callback returns true."

For example, here's how we could Mnd the Mrst name in a collection that starts
with the letter B:

$names = collect(['Adam', 'Tracy', 'Ben', 'Beatrice', 'Kyle']);

$names->first(function ($i, $name) {

return $name[0] == 'B';

});

// => 'Ben'

Just like contains, the callback takes the element key as the Mrst parameter, and
the value as the second parameter.

So using first, we can refactor getCheckerFor to look like this:

private function getCheckerFor($file)

{

return $this->checkers->first(function ($i, $checker) use ($file) {

return $checker->canCheck($file);

});

}

Thinking of this variation of first as more like a "Mrst where" makes this a
pretty expressive solution.

97 Part 2. A Lot of Practice

A Hidden Rule

Something that bothers me about this code is that we have a bit of an unwritten
rule in place.

Our getCheckerFor method assumes there's always a matching checker in that
list, because it's expected we never call it unless we call hasCheckerFor Mrst to
verify there's a match. This is a bit of a code smell to me, so what can we do
about it?

By default, first will return null if it doesn't Mnd a match. Our imperative
solution was doing the same thing, since PHP will always return null from a
function if it never hits an explicit return.

Letting null leak into your code can result in a lot of annoying issues that
are diOcult to debug. One approach that's a bit better would be to throw an
exception if a match isn't found, so we know about it right away.

Here's how you might think to write that with our current implementation:

private function getCheckerFor($file)

{

$checker = $this->checkers->first(function ($i, $checker) use ($file) {

return $checker->canCheck($file);

});

if ($checker === null) {

throw new Exception("No matching style checker found!");

}

return $checker;

}

This works, but is there a way we can do it in a more "Tell Don't Ask" style?
Certainly!

Chapter 12. Choosing a Syntax Handler 98

Providing a Default

Just like the get method we talked about in the GitHub score example, first lets
you specify a default value to use if no match is found.

For example, say we wanted to Mnd the Mrst name in a collection that starts with
a B or default to 'Bryan' if none are found:

$names = collect(['Adam', 'Tracy', 'Kyle']);

$names->first(function ($i, $name) {

return $name[0] == 'B';

}, 'Bryan');

// => 'Bryan'

I have no idea why anyone would want to do this but it's the simplest example I could
come up with.

This sounds helpful right? But wait, we don't actually have a default value to
provide, we want to throw an exception!

Thankfully, the collection has us covered. If we pass another closure as the
default value, that closure will be invoked if and only if a match isn't found,
meaning we can rewrite our function like this:

private function getCheckerFor($file)

{

return $this->checkers->first(function ($i, $checker) use ($file) {

return $checker->canCheck($file);

}, function () {

throw new Exception("No matching style checker found!");

});

}

Kind of a cool trick! But I still don't really like this whole "throw an exception"
solution.

If we think about the "Tell Don't Ask" principle some more, doesn't having to
call hasCheckerFor in the Mrst place seem a lot like asking instead of telling? On

99 Part 2. A Lot of Practice

top of that, we're basically duplicating eLort, because hasCheckerFor does all the
work getCheckerFor needs to do to Mnd the checker, but only returns true or false

instead of giving us the checker back.

Is there any way we can "tell" and maybe remove that duplication of eLort?

The Null Object Pattern

One refactoring you can use to replace checks like this is to introduce a Null
Object.

A null object is an object you can use in place of a null value that acts like the
object you really need, but has neutral or no behavior. Put another way, it's an
object that has all the methods you need, but none of those methods actually
do anything.

Now, "doing nothing" is context-dependent, so a null object can't just have
empty methods. You need to Mgure out what "do nothing" means in your
situation and build that into your null object.

For example, I gave a talk once about refactoring some code that dealt with
applying coupons to orders in an e-commerce system.

Coupons all have a discount method that returns how much an order should
be discounted when using that coupon. At one point in the talk, I introduce
a NullCoupon that always discounts an order by zero dollars, eLectively never
giving a discount.

It looked something like this:

class NullCoupon

{

public function discount($order)

{

return 0;

}

}

Chapter 12. Choosing a Syntax Handler 100

http://adamwathan.me/2015/09/02/chasing-perfect-at-laracon-eu/

This is what I mean when I say you need to Mgure out what "do nothing" means
in your context.

So what would introducing a null object look like in our context?

The Null Checker

Let's look at the code we started with again, highlighting what happens when
we do have a matching checker vs. what happens when we don't:

private function checkFile($file)

{

if ($this->hasCheckerFor($file)) {

$checker = $this->getCheckerFor($file);

$violations = $checker->check($file);

return new CheckedFile($file, $violations);

} else {

return new CheckedFile($file, []);

}

}

The only diLerence here is that when we don't have a matching checker, we
just pass in an empty array instead of an array of violations.

So if we were to create a NullChecker, it would just need to return an empty array
instead of an array of violations any time we asked it to check a Mle:

class NullChecker

{

public function check($file)

{

return [];

}

}

Taking small steps, let's see how this lets us refactor this code.

101 Part 2. A Lot of Practice

First, let's use the NullChecker to get the empty array instead of hard coding it in
the else clause:

private function checkFile($file)

{

if ($this->hasCheckerFor($file)) {

$checker = $this->getCheckerFor($file);

$violations = $checker->check($file);

return new CheckedFile($file, $violations);

} else {

$checker = new NullChecker;

$violations = $checker->check($file);

return new CheckedFile($file, $violations);

}

}

This is actually more code than we had before, but now both sides of the if

statement look awfully similar don't they? What if we updated getCheckerFor to
give us a NullChecker if it couldn't Mnd a match?

private function getCheckerFor($file)

{

return $this->checkers->first(function ($i, $checker) use ($file) {

return $checker->canCheck($file);

}, new NullChecker);

}

This means there's always going to be a match now right? So as an intermediate
step, let's update hasCheckerFor to just return true:

private function hasCheckerFor($file)

{

- return $this->checkers->contains(function ($i, $checker) use ($file)) {

- return $checker->canCheck($file);

- }

+ return true;

}

Chapter 12. Choosing a Syntax Handler 102

Now we can eliminate the else clause, giving us this:

private function checkFile($file)

{

if ($this->hasCheckerFor($file)) {

$checker = $this->getCheckerFor($file);

$violations = $checker->check($file);

return new CheckedFile($file, $violations);

}

}

Since hasCheckerFor just returns true, we can actually eliminate the conditional
altogether:

private function checkFile($file)

{

$checker = $this->getCheckerFor($file);

$violations = $checker->check($file);

return new CheckedFile($file, $violations);

}

Now we're actually not calling hasCheckerFor at all, so we can delete that entire
method, leaving us with this Mnal solution:

class Nitpicker

{

// ...

private function checkFile($file)

{

$violations = $this->getCheckerFor($file)->check($file);

return new CheckedFile($file, $violations);

}

103 Part 2. A Lot of Practice

private function getCheckerFor($file)

{

return $this->checkers->first(function ($i, $checker) use ($file) {

return $checker->canCheck($file);

}, new NullChecker);

}

}

No more loops, conditionals, or exceptions! Just simple, concise, expressive
code. Benign defaults are a powerful tool, use them!

Tagging on the Fly
Imagine you are building a blog engine, and you want to be able to add tags to
your blog posts.

A nice UI pattern for something like this is to use an autocomplete multiselect
box like Select2 or similar, and allow someone to add tags from an existing list
or create new ones on the Ny.

This can get a little tricky on the server side though, because the request might
contain mixed data.

For this example, we'll say that existing tags come through as IDs, and new tags
come through as just a tag name:

[

'tags' => [

17,

32,

'recipes',

11,

'kitchen'

]

]

Chapter 13. Tagging on the Fly 104

https://select2.github.io/

Using a dedicated PostTagsController to manage tags for a post, here's one way
we could write the update action (ignoring validation for brevity):

class PostTagsController

{

public function update($postId)

{

$post = Post::find($postId);

$tagIds = [];

foreach (request('tags') as $nameOrId) {

if (is_numeric($nameOrId)) {

$tagIds[] = $nameOrId;

} else {

$tag = Tag::create(['name' => $nameOrId]);

$tagIds[] = $tag->id;

}

}

$post->tags()->sync($tagIds);

return view('posts.index');

}

}

Extracting the Loop

So how can we simplify this using collections? The Mrst thing I want to do is
extract this loop into a separate function:

class PostTagsController

{

public function update($postId)

{

$post = Post::find($postId);

$tagIds = [];

105 Part 2. A Lot of Practice

foreach (request('tags') as $nameOrId) {

if (is_numeric($nameOrId)) {

$tagIds[] = $nameOrId;

} else {

$tag = Tag::create(['name' => $nameOrId]);

$tagIds[] = $tag->id;

}

}

$post->tags()->sync($tagIds);

return view('posts.index');

}

}

To extract this into a function, we need a good name.

So what is this block of code trying to do? To me, it looks like the job of this
code is to take a list of mixed tag IDs and tag names and normalize that list into
just tag IDs.

Let's extract a function called normalizeTagsToIds:

class PostTagsController

{

public function update($postId)

{

$post = Post::find($postId);

$tagIds = $this->normalizeTagsToIds(request('tags'));

$post->tags()->sync($tagIds);

return view('posts.index');

}

Chapter 13. Tagging on the Fly 106

private function normalizeTagsToIds($tags)

{

$tagIds = [];

foreach ($tags as $nameOrId) {

if (is_numeric($nameOrId)) {

$tagIds[] = $nameOrId;

} else {

$tag = Tag::create(['name' => $nameOrId]);

$tagIds[] = $tag->id;

}

}

return $tagIds;

}

}

Normalizing with Map

Looking at the code above, do you see any of the patterns we talked about in
the Mrst part of the book?

How about now?

private function normalizeTagsToIds($tags)

{

$tagIds = [];

foreach ($tags as $nameOrId) {

if (is_numeric($nameOrId)) {

$tagId = $nameOrId;

} else {

$tag = Tag::create(['name' => $nameOrId]);

$tagId = $tag->id;

}

107 Part 2. A Lot of Practice

$tagIds[] = $id;

}

return $tagIds;

}

Aside from the conditional, this is just a standard map operation! And there's
nothing stopping us from using an if statement inside a map:

private function normalizeTagsToIds($tags)

{

return collect($tags)->map(function ($nameOrId) {

if (is_numeric($nameOrId)) {

return $nameOrId;

}

return Tag::create(['name' => $nameOrId])->id;

})->all();

}

A lot of the time when I have a function meant to operate on a collection like
normalizeTagsToIds, I also create a function for operating on the individual item
to break up the code a bit more. Here's what the whole thing would look like:

class PostTagsController

{

public function update($postId)

{

$post = Post::find($postId);

$tagIds = $this->normalizeTagsToIds(request('tags'));

$post->tags()->sync($tagIds);

return view('posts.index');

}

Chapter 13. Tagging on the Fly 108

private function normalizeTagsToIds($tags)

{

return collect($tags)->map(function ($nameOrId) {

return $this->normalizeTagToId($nameOrId);

});

}

private function normalizeTagToId($nameOrId)

{

if (is_numeric($nameOrId)) {

return $nameOrId;

}

return Tag::create(['name' => $nameOrId])->id;

}

}

Until now we've only used map to perform the exact same transformation on
every item in a collection, but it can be a really useful tool in situations like this
as well where you need to normalize a collection with some rough edges into a
consistent data set.

Nitpicking a Pull Request
I was working on a new Nitpick feature recently where I wanted to post a
comment like "Code style looks great, nice job!" if a pull request was opened
and no style violations were detected.

Before we get into adding that functionality, let's walk through the existing
code.

Here's what it looks like to nitpick a pull request:

109 Part 2. A Lot of Practice

public function nitpick($pullRequest)

{

$pullRequest->changedFiles()->flatMap(function ($changedFile) {

return $this->checkFile($changedFile)->comments();

})->reject(function ($comment) use ($pullRequest) {

return $comment->isDuplicate($pullRequest);

})->each(function ($comment) use ($pullRequest) {

$pullRequest->postComment($comment);

});

}

Pretty cool that the whole thing is just one big collection pipeline, huh? Let's
break down what's happening here:

1. Given a pull request, get a collection of the Mles that changed in that PR.

2. Check each of those changed Mles for violations, and return a collection
of style comments for each Mle.

3. Collapse those collections of comments into one Nat collection of
comments.

4. Since a PR is re-analyzed every time it's updated, reject any comments
that have already been posted on the PR.

5. Post each comment on the pull request.

Of course there's more complexity hidden in the methods we call along the
way in this pipeline, but it's really cool to me how well this demonstrates what
you can do by just transforming data; thinking of your applications as just a big
function that takes some input and produces some output.

A Fork in the Code

In the existing code, aRer Mguring out which comments need to be posted,
we just post them all unconditionally. Conveniently, if there's no comments to
post, the callback in each just never runs, so we never have to worry about the
empty case. An empty collection is kind of like a Null Object in cases like this;
pretty cool!

Chapter 14. Nitpicking a Pull Request 110

But now that we want to post a diLerent comment if the collection is empty, we
need to introduce a conditional. If we want our code to stay readable, we also
need to introduce a temporary variable:

public function nitpick($pullRequest)

{

$comments = $pullRequest->changedFiles()

->flatMap(function ($changedFile) {

return $this->checkFile($changedFile)->comments();

})->reject(function ($comment) use ($pullRequest) {

return $comment->isDuplicate($pullRequest);

});

if ($comments->isEmpty()) {

$pullRequest->postNoViolationsComment();

} else {

$comments->each(function ($comment) use ($pullRequest) {

$pullRequest->postComment($comment);

});

}

}

Is this the worst thing in the world? Probably not, but I'll be damned if it
wouldn't be cool to be able to write this code as one continuous pipeline.

Learning from Smalltalk

Smalltalk is one of the earliest truly object-oriented programming languages.
In Smalltalk, everything is an object, and every control structure is
implemented as messages sent to those objects.

This has some interesting implications, namely that Smalltalk has no if

statements!

So how do you write conditional code in Smalltalk? Well remember what I said
about how everything in Smalltalk is an object? Even true and false are objects;
instances of the True and False classes which both extend Boolean.

111 Part 2. A Lot of Practice

So whenever you need to write an if statement in Smalltalk, you do it by
calling the ifTrue method on a Boolean instance, and pass it a block of code you'd
like it to run if the boolean is true.

The Smalltalk syntax can seem very alien at Mrst, so here's what it would look
like if PHP worked the same way:

$boolean = true;

$boolean->ifTrue(function () {

// do something

});

Smalltalk also has an ifFalse method, and ifTrue and ifFalse both return the
original object, so they can even be chained together like so:

$boolean = true;

$boolean->ifTrue(function () {

// do something

})->ifFalse(function () {

// do something else

});

A nice side eLect of using method calls for conditionals like this is that you can
chain them aRer other methods as well. For example, say we had this code for
throwing some sort of authorization error if a user didn't have the necessary
permissions for some action:

if (! $user->isAdmin()) {

throw new AuthorizationException;

}

Using the Smalltalk style, we could rewrite that like this:

$user->isAdmin()->ifFalse(function () {

throw new AuthorizationException;

});

Chapter 14. Nitpicking a Pull Request 112

Starting to get an idea of where we're going with this?

Collection Macros

One cool thing about the Laravel Collection class is that it's macroable.

Laravel's support package includes a trait called Macroable that allows you to add
methods to a class at run time.

For example, here's how we could deMne a new method on the collection called
odd that only returns the items at odd positions in the collection:

Collection::macro('odd', function () {

return $this->values()->filter(function ($value, $i) {

return $i % 2 !== 0;

});

});

collect([0, 1, 2, 3, 4, 5])->odd();

// => [1, 3, 5]

When I'm working in a Laravel app, I keep all of my collection macros in a
service provider like this:

class CollectionExtensions extends ServiceProvider

{

public function boot()

{

Collection::macro('odd', function () {

return $this->values()->filter(function ($value, $i) {

return $i % 2 !== 0;

});

});

// ...and any other lovely macros you'd like to add.

}

113 Part 2. A Lot of Practice

public function register()

{

// ...

}

}

So inspired by Smalltalk and powered by macros, let's get our damn pipeline
back!

Chainable Conditions

In our situation, we have two cases to cover:

1. If the collection is empty, post an "all good!" comment.

2. If the collection has any comments, post those comments.

Let's macro in a few methods to cover these cases.

First let's create a method called ifEmpty that will execute it's closure only if the
collection is empty. Here's what that would look like:

Collection::macro('ifEmpty', function ($callback) {

if ($this->empty()) {

$callback();

}

return $this;

});

All we do is run the callback if the collection is empty, then return the
collection so we can continue to chain if necessary.

Next let's add a method that runs if the collection is not empty, or put another
way, if it has any items.

We'll call this one ifAny, and we'll pass the collection into the callback the user
provides so they have access to the collection if they need it:

Chapter 14. Nitpicking a Pull Request 114

Collection::macro('ifAny', function ($callback) {

if (! $this->empty()) {

$callback($this);

}

return $this;

});

Replacing our conditional with these new methods, we get this intermediate
step:

public function nitpick($pullRequest)

{

$comments = $pullRequest->changedFiles()->flatMap(function ($changedFile) {

return $this->checkFile($changedFile)->comments();

})->reject(function ($comment) use ($pullRequest) {

return $comment->isDuplicate($pullRequest);

});

$comments->ifEmpty(function () use ($pullRequest) {

$pullRequest->postNoViolationsComment();

});

$comments->ifAny(function ($comments) use ($pullRequest) {

$comments->each(function ($comment) use ($pullRequest) {

$pullRequest->postComment($comment);

});

});

}

Of course, now these operations are all chainable, so we can collapse this down
into a single pipeline and remove the temporary variable entirely:

115 Part 2. A Lot of Practice

public function nitpick($pullRequest)

{

$pullRequest->changedFiles()->flatMap(function ($changedFile) {

return $this->checkFile($changedFile)->comments();

})->reject(function ($comment) use ($pullRequest) {

return $comment->isDuplicate($pullRequest);

})->ifAny(function ($comments) use ($pullRequest) {

$comments->each(function ($comment) use ($pullRequest) {

$pullRequest->postComment($comment);

});

})->ifEmpty(function () use ($pullRequest) {

$pullRequest->postNoViolationsComment();

});

}

I'd also add a new function to the $pullRequest object that can post multiple
comments, so we can get rid of that extra level of indentation:

public function nitpick($pullRequest)

{

$pullRequest->changedFiles()->flatMap(function ($changedFile) {

return $this->checkFile($changedFile)->comments();

})->reject(function ($comment) use ($pullRequest) {

return $comment->isDuplicate($pullRequest);

})->ifAny(function ($comments) use ($pullRequest) {

$pullRequest->postComments($comments);

})->ifEmpty(function () use ($pullRequest) {

$pullRequest->postNoViolationsComment();

});

}

If you ask me, this is a pretty interesting way to write this code. Is it always
the best solution? Probably not, but the idea of conditions as methods is pretty
fascinating, and I think it opens up a lot of possibilities.

Keep it in your back pocket and play with it when it makes sense. And if you
think this is cool, go study Smalltalk! :)

Chapter 14. Nitpicking a Pull Request 116

Comparing Monthly Revenue
So far we've only worked with problems that started with a single collection of
items, but collection pipelines can be useful in other cases as well.

Say we were asked to generate a report that compared revenue from every
month this year to revenue from every month last year.

Given last year's monthly revenue and this year's monthly revenue, like so:

$lastYear = [

2976.50, // Jan

2788.84, // Feb

2353.92, // Mar

3365.36, // Apr

2532.99, // May

1598.42, // Jun

2751.82, // Jul

2576.17, // Aug

2324.87, // Sep

2299.21, // Oct

3483.10, // Nov

2245.08, // Dec

];

$thisYear = [

3461.77,

3665.17,

3210.53,

3529.07,

3376.66,

3825.49,

2165.24,

2261.40,

3988.76,

3302.42,

3345.41,

2904.80,

];

117 Part 2. A Lot of Practice

...we need to write a function that takes those collections, and spits out one
collection showing the delta for each month.

compare_revenue($thisYear, $lastYear);

// => [

// 485.27,

// 876.33,

// 856.61,

// 163.71,

// 843.67,

// 2227.07,

// -586.58,

// -314.77,

// 1663.89,

// 1003.21,

// -137.69,

// 659.72,

//];

Matching on Index

Here's how we might solve this problem using a foreach loop:

function compare_revenue($thisYear, $lastYear)

{

$deltas = [];

foreach ($lastYear as $month => $monthlyRevenue) {

$deltas[] = $thisYear[$month] - $monthlyRevenue;

}

return $deltas;

}

This is pretty short and it works, but some things just feel oL about it. For
example, why iterate over $lastYear instead of $thisYear? There's no real reason
for it, it's just arbitrary.

Chapter 15. Comparing Monthly Revenue 118

It feels like we've just arranged some code that happens to work, instead of
trying to model what we're trying to do in a meaningful, expressive way.

Let's try and write this using a more declarative style.

Zipping Things Together

I'd like to introduce you to an operation called zip.

zip lets you take one collection, and pair every element in that collection with
the corresponding element in another collection.

For example, here we're zipping [1, 2, 3] with ['a', 'b', 'c'] to produce a
new collection of pairs:

collect([1, 2, 3])->zip(['a', 'b', 'c']);

// => [

// [1, 'a'],

// [2, 'b'],

// [3, 'c'],

//];

Think of each collection as being one side of a zipper on a jacket. When we
zip the two sides together, each tooth on the Mrst side is paired up with a tooth
from the second side.

Using Zip to Compare

As you might have guessed, zip is really handy when you need to compare
corresponding values between two collections.

If we zip our two years of revenue together, we get this:

119 Part 2. A Lot of Practice

collect($thisYear)->zip($lastYear);

// => [

// [2976.50, 3461.77],

// [2788.84, 3665.17],

// [2353.92, 3210.53],

// [3365.36, 3529.07],

// [2532.99, 3376.66],

// [1598.42, 3825.49],

// [2751.82, 2165.24],

// [2576.17, 2261.40],

// [2324.87, 3988.76],

// [2299.21, 3302.42],

// [3483.10, 3345.41],

// [2245.08, 2904.80],

//];

Now that we have each corresponding month grouped in pairs, we can map

those pairs into their deltas, giving us this solution:

function compare_revenue($thisYear, $lastYear)

{

return collect($thisYear)->zip($lastYear)->map(function ($thisAndLast) {

return $thisAndLast[0] - $thisAndLast[1];

});

}

Like always, we were able to solve this problem using collection pipelines by
trying to break it down into small, discrete steps.

zip was a tricky one to Mnd use cases for when I Mrst learned it, but nowadays
I run into opportunities to use it all the time. Pay attention to situations where
you want to loop over two arrays at once, zip is the secret to solving those
problems with a collection pipeline.

Chapter 15. Comparing Monthly Revenue 120

Transposing Form Input
Dealing with arrays in form submissions is a pain in the ass.

Imagine you need to build a page that allows users to add multiple contacts at
once. If a contact has a name, email, and occupation, ideally the incoming request
would look something like this:

[

'contacts' => [

[

'name' => 'Jane',

'occupation' => 'Doctor',

'email' => 'jane@example.com',

],

[

'name' => 'Bob',

'occupation' => 'Plumber',

'email' => 'bob@example.com',

],

[

'name' => 'Mary',

'occupation' => 'Dentist',

'email' => 'mary@example.com',

],

],

];

The problem is that craRing a form that actually submits this format is
surprisingly complicated.

If you haven't had to do this before, you might think you can get away with
something like this, using just a pinch of JavaScript to duplicate the form Melds
while keeping all of the Meld names the same:

121 Part 2. A Lot of Practice

<form method="POST" action="/contacts">

<div>

<label>

Name

<input name="contacts[][name]">

</label>

<label>

Email

<input name="contacts[][email]">

</label>

<label>

Occupation

<input name="contacts[][occupation]">

</label>

</div>

<!-- Adds another set of form fields using JavaScript -->

<button type="button">Add another contact</button>

<button type="submit">Save contacts</button>

</form>

...but this gives you a request that looks like this:

[

'contacts' => [

['name' => 'Jane'],

['occupation' => 'Doctor'],

['email' => 'jane@example.com'],

['name' => 'Bob'],

['occupation' => 'Plumber'],

['email' => 'bob@example.com'],

['name' => 'Mary'],

['occupation' => 'Dentist'],

['email' => 'mary@example.com'],

],

];

Chapter 16. Transposing Form Input 122

To get the form to submit in the correct format, you need to give each set of
Melds an explicit index:

<form method="POST" action="/contacts">

<div>

<label>

Name

<input name="contacts[0][names]">

</label>

<label>

Email

<input name="contacts[0][emails]">

</label>

<label>

Occupation

<input name="contacts[0][occupations]">

</label>

</div>

<!-- Adds another set of form fields using JavaScript -->

<button type="button">Add another contact</button>

<button type="submit">Save contacts</button>

</form>

...which means that when you add another set of Melds, you need to change the
name of every input, incrementing the index by one.

Doesn't seem too unreasonable at Mrst, just count the sets of Melds and add one
for the new set right?

Wrong! What if a user removes a set of Melds? Or two sets of Melds? Now there
might only be 3 sets remaining but the last set still has an index of 4, so just
counting the Melds is going to result in a collision.

So what can you do? Well, you have a few options:

1. Parse out the index from the last set of Melds and add one to that
number whenever you add new Melds.

123 Part 2. A Lot of Practice

2. Keep track of the index as state in your JavaScript.

3. Throw away all of the indexes and recalculate them every time you add
or remove a set of Melds.

All of a sudden this seems like a lot more work on the front-end than you
signed up for! But there's one other option:

Submit the data in a di3erent format and deal with it on the server.

As long as we aren't nesting past the empty square brackets, PHP is happy to let
us leave out the index. So what you'll commonly see people do in this situation
(and what you may have done yourself) is name the form Melds like this:

<form method="POST" action="/contacts">

<div>

<label>

Name

<input name="names[]">

</label>

<label>

Email

<input name="emails[]">

</label>

<label>

Occupation

<input name="occupations[]">

</label>

</div>

<!-- Adds another set of form fields using JavaScript -->

<button type="button">Add another contact</button>

<button type="submit">Save contacts</button>

</form>

The beneMt of course is that now we don't have to keep track of the index.
We can reuse the same markup for every set of Melds, never worrying about

Chapter 16. Transposing Form Input 124

the total number of Melds in the form, or what happens when a set of Melds is
removed. Excellent!

The disadvantage is that now our incoming request looks like this:

[

'names' => [

'Jane',

'Bob',

'Mary',

],

'emails' => [

'jane@example.com',

'bob@example.com',

'mary@example.com',

],

'occupations' => [

'Doctor',

'Plumber',

'Dentist',

],

];

Ruh-roh!

Quick and Dirty

We need to get these contacts out of the request and into our system. Say we
want our controller action to take this general form:

public function store()

{

$contacts = /* Build the contacts using the request data */;

Auth::user()->contacts()->saveMany($contacts);

return redirect()->home();

}

125 Part 2. A Lot of Practice

How can we translate our request data into actual Contact objects? An
imperative solution might look something like this:

public function store(Request $request)

{

$contacts = [];

$names = $request->get('names');

$emails = $request->get('emails');

$occupations = $request->get('occupations');

foreach ($names as $i => $name) {

$contacts[] = new Contact([

'name' => $name,

'email' => $emails[$i],

'occupation' => $occupations[$i],

]);

}

Auth::user()->contacts()->saveMany($contacts);

return redirect()->home();

}

First, we grab the names, emails, and occupations from the request. Then we
arbitrarily iterate over one of them (the names in this case), pull out the other
Melds we need by matching up the index, and create our Contact objects.

There's certainly nothing wrong with this approach, I mean, it works, right? But
we're breaking the golden rule, and those temporary variables are bugging me.
Can we refactor this into a series of independent transformations that don't
rely on temporary state? Let's see!

Identifying a Need

First things Mrst, let's get our request data into a collection.

Chapter 16. Transposing Form Input 126

public function store(Request $request)

{

$requestData = collect($request->only('names', 'emails', 'occupations'));

// ...

}

This pulls names, emails, and occupations out into a new collection, which is about
the best starting point we're going to get from that form submission.

Next, we need to somehow get our Contact objects out of this collection.

public function store(Request $request)

{

$requestData = collect($request->only('names', 'emails', 'occupations'));

$contacts = $requestData->/* ??? */;

// ...

}

Typically when we have a collection of data and we need to transform each
element into something new, we use map.

But in order to map our contact data into Contact objects, we need each element
in our collection to contain the name, email, and occupation for a single contact.
Right now, the Mrst element in our array is all of the names, the second element
is all emails, and the last element is all occupations.

So before we can use map, we need some mystery function to get our data into
the right structure.

public function store(Request $request)

{

$requestData = collect($request->only('names', 'emails', 'occupations'));

127 Part 2. A Lot of Practice

$contacts = $requestData->/*

Mystery operation!

*/->map(function ($contactData) {

return new Contact([

'name' => $contactData['name'],

'email' => $contactData['email'],

'occupation' => $contactData['occupation'],

]);

});

// ...

}

Introducing Transpose

Transpose is an oRen overlooked list operation that I Mrst noticed in Ruby.

The goal of transpose is to rotate a multidimensional array, turning the rows
into columns and the columns into rows.

Say we had this array:

$before = [

[1, 2, 3],

[4, 5, 6],

[7, 8, 9],

];

If we transpose that array, [1, 2, 3] becomes the Mrst column rather than the
Mrst row, [4, 5, 6] becomes the second column, and [7, 8, 9] becomes the last
column.

Chapter 16. Transposing Form Input 128

http://ruby-doc.org/core-2.2.0/Array.html#method-i-transpose

$after = [

[1, 4, 7],

[2, 5, 8],

[3, 6, 9],

];

Let's look at our incoming request again:

[

'names' => [

'Jane',

'Bob',

'Mary',

],

'emails' => [

'jane@example.com',

'bob@example.com',

'mary@example.com',

],

'occupations' => [

'Doctor',

'Plumber',

'Dentist',

],

];

If we get rid of the keys, we're leR with a multidimensional array that looks like
this:

[

['Jane', 'Bob', 'Mary'],

['jane@example.com', 'bob@example.com', 'mary@example.com'],

['Doctor', 'Plumber', 'Dentist'],

];

I wonder what happens if we transpose that array?

129 Part 2. A Lot of Practice

[

['Jane', 'jane@example.com', 'Doctor'],

['Bob', 'bob@example.com', 'Plumber'],

['Mary', 'mary@example.com', 'Dentist'],

];

Whoa! This looks pretty close to the structure we wanted in Mrst place, albeit
without the keys. We can work with this!

Implementing Transpose

Laravel's Collection class doesn't implement transpose out of the box, but since
collections are macroable, we can add it at runtime.

Here's what a basic implementation looks like:

Collection::macro('transpose', function () {

$items = array_map(function (...$items) {

return $items;

}, ...$this->values());

return new static($items);

});

Transpose in Practice

Now that we've found our mystery function, we can Mnish oL our controller
action:

public function store(Request $request)

{

$requestData = collect($request->only('names', 'emails', 'occupations'));

Chapter 16. Transposing Form Input 130

$contacts = $requestData->transpose()->map(function ($contactData) {

return new Contact([

'name' => $contactData[0],

'email' => $contactData[1],

'occupation' => $contactData[2],

]);

});

Auth::user()->contacts()->saveMany($contacts);

return redirect()->home();

}

We can even collapse this down further, turning just about the whole action
into a single chain:

public function store(Request $request)

{

collect($request->only([

'names',

'emails',

'occupations'

]))->transpose()->map(function ($contactData) {

return new Contact([

'name' => $contactData[0],

'email' => $contactData[1],

'occupation' => $contactData[2],

]);

})->each(function ($contact) {

Auth::user()->contacts()->save($contact);

});

return redirect()->home();

}

Now instead of being deep in the details worrying about looping over a data set
and matching up keys between diLerent arrays, we're operating on the entire
data set at once, using a more declarative style at a higher level of abstraction.

131 Part 2. A Lot of Practice

Ranking a Competition
Here's one I ran into on a client project a few months ago. I was working on an
app for managing competitions and I needed to write some code for ranking
how the teams did aRer a competition was Mnished.

I started with a collection of team scores that looked something like this:

$scores = collect([

['score' => 76, 'team' => 'A'],

['score' => 62, 'team' => 'B'],

['score' => 82, 'team' => 'C'],

['score' => 86, 'team' => 'D'],

['score' => 91, 'team' => 'E'],

['score' => 67, 'team' => 'F'],

['score' => 67, 'team' => 'G'],

['score' => 82, 'team' => 'H'],

]);

So what does it mean to rank these scores? At Mrst, it might seem as simple as
just sorting them in reverse order by score and calling it a day.

That's easy enough using the sortByDesc method, which takes the name of the
Meld to sort by as a parameter:

$rankedScores = $scores->sortByDesc('score');

// => [

// ['score' => 91, 'team' => 'E'],

// ['score' => 86, 'team' => 'D'],

// ['score' => 82, 'team' => 'C'],

// ['score' => 82, 'team' => 'H'],

// ['score' => 76, 'team' => 'A'],

// ['score' => 67, 'team' => 'F'],

// ['score' => 67, 'team' => 'G'],

// ['score' => 62, 'team' => 'B'],

//];

Chapter 17. Ranking a Competition 132

Now that they are in order, we can just use the array index + 1 as the rank right?
Not quite, because sortByDesc actually maintains the old keys, so despite our
$rankedScores being in the correct order, they still have explicit keys that don't
match the expected ranking:

$rankedScores = $scores->sortByDesc('score');

// => [

// 4 => ['score' => 91, 'team' => 'E'],

// 3 => ['score' => 86, 'team' => 'D'],

// 2 => ['score' => 82, 'team' => 'C'],

// 7 => ['score' => 82, 'team' => 'H'],

// 0 => ['score' => 76, 'team' => 'A'],

// 5 => ['score' => 67, 'team' => 'F'],

// 6 => ['score' => 67, 'team' => 'G'],

// 1 => ['score' => 62, 'team' => 'B'],

//];

One way to Mx this is to call the values method on the collection, which removes
any explicit keys and resets them back to normal:

$rankedScores = $scores->sortByDesc('score')->values();

// => [

// 0 => ['score' => 91, 'team' => 'E'],

// 1 => ['score' => 86, 'team' => 'D'],

// 2 => ['score' => 82, 'team' => 'C'],

// 3 => ['score' => 82, 'team' => 'H'],

// 4 => ['score' => 76, 'team' => 'A'],

// 5 => ['score' => 67, 'team' => 'F'],

// 6 => ['score' => 67, 'team' => 'G'],

// 7 => ['score' => 62, 'team' => 'B'],

//];

That's a bit better, but our actual rankings are still oL by one right? I think it
would be better if we could add an explicit rank Meld to each score that held the
actual rank number, starting from 1 instead of 0.

133 Part 2. A Lot of Practice

Zipping-in the Ranks

One way to do this is to zip the scores with a list of ranks.

We can generate the list of ranks using PHP's range($start, $end) function to
create an array starting at 1 and ending at $scores->count():

$rankedScores = $scores->sortByDesc('score')

->zip(range(1, $scores->count()));

// => [

// [['score' => 91, 'team' => 'E'], 1],

// [['score' => 86, 'team' => 'D'], 2],

// [['score' => 82, 'team' => 'C'], 3],

// [['score' => 82, 'team' => 'H'], 4],

// [['score' => 76, 'team' => 'A'], 5],

// [['score' => 67, 'team' => 'F'], 6],

// [['score' => 67, 'team' => 'G'], 7],

// [['score' => 62, 'team' => 'B'], 8],

//];

A nice side eLect of using this approach is that we can drop the values call, since
we don't really need to worry about the keys anymore.

ARer zipping the scores with their ranks, we can use map to turn the rank into
an actual Meld in each score:

$rankedScores = $scores->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

});

Chapter 17. Ranking a Competition 134

// => [

// ['rank' => 1, 'score' => 91, 'team' => 'E'],

// ['rank' => 2, 'score' => 86, 'team' => 'D'],

// ['rank' => 3, 'score' => 82, 'team' => 'C'],

// ['rank' => 4, 'score' => 82, 'team' => 'H'],

// ['rank' => 5, 'score' => 76, 'team' => 'A'],

// ['rank' => 6, 'score' => 67, 'team' => 'F'],

// ['rank' => 7, 'score' => 67, 'team' => 'G'],

// ['rank' => 8, 'score' => 62, 'team' => 'B'],

//];

Nice! Time to call it a day right? Not just yet...

Dealing with Ties

If you look closely at our ranked scores, you'll notice there's actually two sets of
ties:

[

['rank' => 1, 'score' => 91, 'team' => 'E'],

['rank' => 2, 'score' => 86, 'team' => 'D'],

['rank' => 3, 'score' => 82, 'team' => 'C'],

['rank' => 4, 'score' => 82, 'team' => 'H'],

['rank' => 5, 'score' => 76, 'team' => 'A'],

['rank' => 6, 'score' => 67, 'team' => 'F'],

['rank' => 7, 'score' => 67, 'team' => 'G'],

['rank' => 8, 'score' => 62, 'team' => 'B'],

];

Is it really fair that team C gets third place and team H gets fourth place, even
though they have the same score? Why not the other way around?

The way this is handled in standard competition ranking is to give tied scores
the same rank and skip the ranks those scores would've got otherwise. Sounds
sort of confusing, but really it's pretty intuitive when you see it.

135 Part 2. A Lot of Practice

https://en.wikipedia.org/wiki/Ranking#Standard_competition_ranking_.28.221224.22_ranking.29

Here's what our scores would look like adjusted for standard competition
ranking:

[

['rank' => 1, 'score' => 91, 'team' => 'E'],

['rank' => 2, 'score' => 86, 'team' => 'D'],

['rank' => 3, 'score' => 82, 'team' => 'C'],

['rank' => 3, 'score' => 82, 'team' => 'H'],

['rank' => 5, 'score' => 76, 'team' => 'A'],

['rank' => 6, 'score' => 67, 'team' => 'F'],

['rank' => 6, 'score' => 67, 'team' => 'G'],

['rank' => 8, 'score' => 62, 'team' => 'B'],

];

Notice that teams C and H both get third place now, but we skip fourth place,
so team A is still in MRh as they were before.

Ok sure sounds reasonable, but how on earth do we implement this?!

One Step at a Time

I have a confession to make:

A lot of the time when I'm solving problems with collection pipelines, I have no
idea what the solution is going to be before I start programming.

One of the nicest things about collection pipelines is that each step is small and
discrete. We've talked a bit about how that makes code easier to follow, but it
also makes code easier to write.

Instead of having to Mgure out the whole algorithm in advance, I only ever have
to worry about getting one step closer to the solution than I am right now. If I
do that enough times, eventually I end up at the solution.

So what could we try to get us one step closer to implementing standard
competition ranking?

Chapter 17. Ranking a Competition 136

Grouping by Score

If teams with the same score are all supposed to get the same rank, would
grouping the results by their score get us any closer to a solution? Let's give it a
shot.

We can group items in a collection using the groupBy method. groupBy takes a
closure as a parameter, and groups items based on the return value of that
closure.

For example, say we wanted to group a list of names by length. We would pass
a closure that returns the length of each name, like so:

$names = collect(['Adam', 'Bryan', 'Jane', 'Dan', 'Kayla']);

$names->groupBy(function ($name) {

return strlen($name);

});

This would give us a collection that looked like this:

[

4 => ['Adam', 'Jane'],

5 => ['Bryan', 'Kayla'],

3 => ['Dan'],

]

So we can group our results by score by just returning the score of each result:

$rankedScores = $scores->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

})

137 Part 2. A Lot of Practice

->groupBy(function ($rankedScore) {

return $rankedScore['score'];

});

Conveniently, if you're just grouping by an object property or associative array
Meld, you can also just pass a string to groupBy, telling it which Meld to use:

$rankedScores = $scores->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

})

->groupBy('score');

In our case, that gives us a collection of grouped scores that looks like this:

[

91 => [

['rank' => 1, 'score' => 91, 'team' => 'E']

],

86 => [

['rank' => 2, 'score' => 86, 'team' => 'D']

],

82 => [

['rank' => 3, 'score' => 82, 'team' => 'C'],

['rank' => 4, 'score' => 82, 'team' => 'H'],

],

76 => [

['rank' => 5, 'score' => 76, 'team' => 'A']

],

Chapter 17. Ranking a Competition 138

67 => [

['rank' => 6, 'score' => 67, 'team' => 'F'],

['rank' => 7, 'score' => 67, 'team' => 'G'],

],

62 => [

['rank' => 8, 'score' => 62, 'team' => 'B']

],

];

What next?

Adjusting the Ranks

So we have all of our results grouped by score, and we want to make sure any
teams that have the same score tie for the best possible rank. Let's look at one
of the ties and see if we can think of a way to do this.

$tiedScores = collect([

['rank' => 3, 'score' => 82, 'team' => 'C'],

['rank' => 4, 'score' => 82, 'team' => 'H'],

]);

Given this group of results, how could we make sure both teams tie for third
place?

First we need to Mnd the best rank in group. We can do that by using pluck to get
a collection of every rank, then using the min function to Mnd the lowest rank in
the collection:

$lowestRank = $tiedScores->pluck('rank')->min();

Easy enough! Now we just need to assign that same rank to each team. We can
do that using map to transform each result:

139 Part 2. A Lot of Practice

$lowestRank = $tiedScores->pluck('rank')->min();

$adjustedScores = $tiedScores->map(function ($rankedScore) use ($lowestRank) {

$rankedScore['rank'] = $lowestRank;

return $rankedScore;

})

We have to be a bit careful here because we're not supposed to mutate inside
map remember? In this case, changing the rank key doesn't technically mutate
anything outside of the closure because arrays in PHP are passed by value, but
if we were working with objects this would be a big no-no.

For the sake of consistency I would recommend returning a new array here
anyways, using array_merge to replace the old rank with the new one:

$lowestRank = $tiedScores->pluck('rank')->min();

$adjustedScores = $tiedScores->map(function ($rankedScore) use ($lowestRank) {

- $rankedScore['rank'] = $lowestRank;

- return $rankedScore;

+ return array_merge($rankedScore, [

+ 'rank' => $lowestRank

+]);

})

ARer applying this transformation, we're leR with a set of scores that looks like
this:

[

['rank' => 3, 'score' => 82, 'team' => 'C'],

['rank' => 3, 'score' => 82, 'team' => 'H'],

];

Now both teams are tied for third place like we wanted, perfect!

To apply this transformation to every group of scores, we just need to map each
group through this transformation:

Chapter 17. Ranking a Competition 140

$rankedScores = $scores->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

})

->groupBy('score')

->map(function ($tiedScores) {

$lowestRank = $tiedScores->pluck('rank')->min();

return $tiedScores->map(function ($rankedScore) use ($lowestRank) {

return array_merge($rankedScore, [

'rank' => $lowestRank

]);

});

});

Now we're leR with a collection of adjusted rankings, where any ties are given
the same rank:

[

91 => [

['rank' => 1, 'score' => 91, 'team' => 'E']

],

86 => [

['rank' => 2, 'score' => 86, 'team' => 'D']

],

82 => [

['rank' => 3, 'score' => 82, 'team' => 'C'],

['rank' => 3, 'score' => 82, 'team' => 'H'],

],

76 => [

['rank' => 5, 'score' => 76, 'team' => 'A']

],

141 Part 2. A Lot of Practice

67 => [

['rank' => 6, 'score' => 67, 'team' => 'F'],

['rank' => 6, 'score' => 67, 'team' => 'G'],

],

62 => [

['rank' => 8, 'score' => 62, 'team' => 'B']

],

];

This is starting to look pretty close to a solution!

Collapse and Sort

Right now our results are still grouped by score. We can Natten them down
using collapse, like we've seen in earlier examples:

$rankedScores = $scores->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

})

->groupBy('score')

->map(function ($tiedScores) {

$lowestRank = $tiedScores->pluck('rank')->min();

return $tiedScores->map(function ($rankedScore) use ($lowestRank) {

return array_merge($rankedScore, [

'rank' => $lowestRank

]);

});

})

->collapse();

Chapter 17. Ranking a Competition 142

This leaves us with a Nat collection of scores, properly ranked using standard
competition ranking:

[

['rank' => 1, 'score' => 91, 'team' => 'E'],

['rank' => 2, 'score' => 86, 'team' => 'D'],

['rank' => 3, 'score' => 82, 'team' => 'C'],

['rank' => 3, 'score' => 82, 'team' => 'H'],

['rank' => 5, 'score' => 76, 'team' => 'A'],

['rank' => 6, 'score' => 67, 'team' => 'F'],

['rank' => 6, 'score' => 67, 'team' => 'G'],

['rank' => 8, 'score' => 62, 'team' => 'B'],

];

Awesome, we have the result we were looking for!

Despite this answer being correct at this point, I would still recommend
Mnishing this pipeline by sorting it by rank:

$rankedScores = $scores->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

})

->groupBy('score')

->map(function ($tiedScores) {

$lowestRank = $tiedScores->pluck('rank')->min();

return $tiedScores->map(function ($rankedScore) use ($lowestRank) {

return array_merge($rankedScore, [

'rank' => $lowestRank

]);

});

})

->collapse();

->sortBy('rank');

143 Part 2. A Lot of Practice

The reason I recommend this is that up to this point, the results were only
really in the correct order by chance. The groupBy method happened to keep
our results ordered by score even aRer grouping, but this isn't really a
guarantee that groupBy makes; it's just a coincidence that the grouping
algorithm happens to return the results in that order.

Explicitly sorting by rank at the end makes sure that our code will continue to
work if the grouping algorithm ever changes, so in my opinion it's deMnitely
worth the extra operation.

Cleaning Up

Here's what this behemoth looks like if we stuL it into a function:

function rank_scores($scores)

{

return collect($scores)

->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

})

->groupBy('score')

->map(function ($tiedScores) {

$lowestRank = $tiedScores->pluck('rank')->min();

return $tiedScores->map(function ($rankedScore) use ($lowestRank) {

return array_merge($rankedScore, [

'rank' => $lowestRank

]);

});

})

->collapse()

->sortBy('rank');

}

Chapter 17. Ranking a Competition 144

While I promise this is still easier to read than any procedural solution I was
able to come up with, it's still pretty grim.

Looking at this function, the Mrst thing I'd like to extract is this second map call,
responsible for assigning the same rank to each tied score:

function rank_scores($scores)

{

return collect($scores)

->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

})

->groupBy('score')

->map(function ($tiedScores) {

$lowestRank = $tiedScores->pluck('rank')->min();

return $tiedScores->map(function ($rankedScore) use ($lowestRank) {

return array_merge($rankedScore, [

'rank' => $lowestRank

]);

});

})

->collapse()

->sortBy('rank');

}

Let's pull the body of that out into a separate function called apply_min_rank:

145 Part 2. A Lot of Practice

function rank_scores($scores)

{

return collect($scores)

->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

})

->groupBy('score')

->map(function ($tiedScores) {

return apply_min_rank($tiedScores);

})

->collapse()

->sortBy('rank');

}

function apply_min_rank($tiedScores)

{

$lowestRank = $tiedScores->pluck('rank')->min();

return $tiedScores->map(function ($rankedScore) use ($lowestRank) {

return array_merge($rankedScore, [

'rank' => $lowestRank

]);

});

}

That's a little better. But even so, this still isn't that expressive, and now there's
not really anything meaningful to extract.

Or is there?

Chapter 17. Ranking a Competition 146

Grouping Operations

Looking at our rank_scores function, there's a few steps that stand out to me as
being part of something bigger.

For example, together these three steps are used to assign the initial rankings to
the scores:

function rank_scores($scores)

{

return collect($scores)

->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

})

->groupBy('score')

->map(function ($tiedScores) {

return apply_min_rank($tiedScores);

})

->collapse()

->sortBy('rank');

}

Similarly, these three steps are used to adjust the rankings for tied scores:

function rank_scores($scores)

{

return collect($scores)

->sortByDesc('score')

->zip(range(1, $scores->count()))

147 Part 2. A Lot of Practice

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

})

->groupBy('score')

->map(function ($tiedScores) {

return apply_min_rank($tiedScores);

})

->collapse()

->sortBy('rank');

}

What would it look like to extract these groups of operations into their own
functions?

Breaking the Chain

Here's what an assign_initial_rankings function would look like:

function assign_initial_rankings($scores)

{

return $scores->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

});

}

...and here's what adjust_rankings_for_ties would look like:

Chapter 17. Ranking a Competition 148

function adjust_rankings_for_ties($scores)

{

return $scores->groupBy('score')

->map(function ($tiedScores) {

return apply_min_rank($tiedScores);

})

->collapse();

}

Both are simple enough to understand when they are broken out like this, but
how do we integrate these into our pipeline? It turns out we can't, we'd have to
break the pipeline and use intermediate variables, like this:

function rank_scores($scores)

{

$rankedScores = assign_initial_rankings(collect($scores));

$adjustedScores = adjust_rankings_for_ties($rankedScores);

return $adjustedScores->sortBy('rank');

}

We could add these functions as methods on our collection using macros, but
they don't really make sense as collection methods. Both of these methods are
very domain-speciMc, and they don't really belong with the rest of the general
purpose collection operations.

For a long time, I just accepted this limitation and broke out of the pipeline
when I needed to, but recently I stumbled on a pattern that gives me the best
of both worlds.

The Pipe Macro

Check out this very simple little macro:

Collection::macro('pipe', function ($callback) {

return $callback($this);

});

149 Part 2. A Lot of Practice

All it does is deMne a method called pipe that takes a callback, passes the
collection into the callback, and returns the result.

Brutally simple, but look at what it lets us do:

function rank_scores($scores)

{

return collect($scores)

->pipe(function ($scores) {

return assign_initial_rankings($scores);

})

->pipe(function ($rankedScores) {

return adjust_rankings_for_ties($rankedScores);

})

->sortBy('rank');

}

We've got our pipeline back! Now it's extremely easy to "pipe" our collection
through domain speciMc transformations, saving us from reverting back to
temporary variables, or bloating up the collection class with domain-speciMc
macros.

PHP lets you treat a string as a callback if it matches the name of a function, so
we can even do this:

function rank_scores($scores)

{

return collect($scores)

->pipe('assign_initial_rankings')

->pipe('adjust_rankings_for_ties')

->sortBy('rank');

}

Doesn't get much more expressive than that.

Here's the whole thing for completeness' sake:

Chapter 17. Ranking a Competition 150

function rank_scores($scores)

{

return collect($scores)

->pipe('assign_initial_rankings')

->pipe('adjust_rankings_for_ties')

->sortBy('rank');

}

function assign_initial_rankings($scores)

{

return $scores->sortByDesc('score')

->zip(range(1, $scores->count()))

->map(function ($scoreAndRank) {

list($score, $rank) = $scoreAndRank;

return array_merge($score, [

'rank' => $rank

]);

});

}

function adjust_rankings_for_ties($scores)

{

return $scores->groupBy('score')->map(function ($tiedScores) {

return apply_min_rank($tiedScores);

})->collapse();

}

function apply_min_rank($tiedScores)

{

$lowestRank = $tiedScores->pluck('rank')->min();

return $tiedScores->map(function ($rankedScore) use ($lowestRank) {

return array_merge($rankedScore, [

'rank' => $lowestRank

]);

});

}

Not bad for a pretty complicated problem!

151 Part 2. A Lot of Practice

Afterword

For many years, I used anonymous functions in my code when interacting with
various libraries and didn't think much of it. jQuery needs a callback to run
aRer I make an AJAX request? Sure, but I never really understood why I would
ever use them in my code. What beneMts could anonymous functions really
give me?

It wasn't until I Mrst learned how to use array_map that the power of anonymous
functions really started to click for me. I couldn't believe how many times I
had used that pattern in the past and never once thought about how it could be
abstracted! If there had been a function for doing that all along, what else was I
missing?

ARer map I learned Mlter, then reduce, and at that point I was hooked. Once I
combined this with collection objects to allow the pipeline style we've covered
in this book, I felt like a whole new world of solutions had opened up to me.

It's hard for me to put in to words, but there's something beautiful about taking
some data, piping it through a series of discrete transformations, and having
the solution come out on the other side. There's something clean and pure
about it that makes it an extremely seductive style of programming.

To this day, every time I encounter a new problem the Mrst thing I think is "how
can I solve this with a collection pipeline?", and I am continually amazed by just
how oRen I can use this approach to Mnd an elegant solution.

If you're excited by the ideas in this book, the best way to get comfortable with
them is to practice in your own code. Every time you want to write a loop, force
yourself to solve the problem with a collection. Never write a foreach loop ever
again.

You'll be amazed what you can do with this style of programming if you push
it hard enough. I still haven't found the limit myself.

– Adam Wathan, May 2016

153 Part 3. Afterword

	Contents
	A Bit of Theory
	Imperative vs. Declarative Programming
	Imperative Programming
	Declarative Programming

	Higher Order Functions
	Noticing Patterns

	Functional Building Blocks
	Each
	Map
	Map vs. Each

	Filter
	Reject

	Reduce
	With Great Power

	Transforming Data
	Thinking in Steps
	The Problem with Primitives
	Arrays as Objects

	Introducing Collections
	A Note on Mutability
	Quacking Like... an Array?
	ArrayAccess
	Countable
	IteratorAggregate

	The Golden Rule of Collection Programming

	A Lot of Practice
	Pricing Lamps and Wallets
	Replace Conditional with Filter
	Replace || with Contains
	Reduce to Sum
	Replace Nested Loop with FlatMap
	Plucking for Fun and Profit

	CSV Surgery 101
	Everything is Better as a Collection

	Binary to Decimal
	A Quick Refresher
	Using a For Loop
	Breaking It Down
	Reversing the Collection
	Mapping with Keys

	What's Your GitHub Score?
	Loops and Conditionals
	Replace Collecting Loop with Pluck
	Extract Score Conversion with Map
	Replace Switch with Lookup Table
	Associative Collections
	Extracting Helper Functions
	Encapsulating in a Class

	Formatting a Pull Request Comment
	Concatenating in a Loop
	Map and Implode

	Stealing Mail
	Replace Nested Check with Contains
	Contains as a Higher Order Function

	Choosing a Syntax Handler
	Looking for a Match
	Getting the Right Checker
	Replace Iteration with First
	A Hidden Rule
	Providing a Default
	The Null Object Pattern
	The Null Checker

	Tagging on the Fly
	Extracting the Loop
	Normalizing with Map

	Nitpicking a Pull Request
	A Fork in the Code
	Learning from Smalltalk
	Collection Macros
	Chainable Conditions

	Comparing Monthly Revenue
	Matching on Index
	Zipping Things Together
	Using Zip to Compare

	Transposing Form Input
	Quick and Dirty
	Identifying a Need
	Introducing Transpose
	Implementing Transpose
	Transpose in Practice

	Ranking a Competition
	Zipping-in the Ranks
	Dealing with Ties
	One Step at a Time
	Grouping by Score
	Adjusting the Ranks
	Collapse and Sort
	Cleaning Up
	Grouping Operations
	Breaking the Chain
	The Pipe Macro

	Afterword

